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Abstract

Text-to-Image diffusion models have shown remarkable
capabilities in generating high-quality images. However,
current models often struggle to adhere to the complete set
of conditions specified in the input text and return unfaithful
generations. Existing works address this problem by either
fine-tuning the base model or modifying the latent repre-
sentations during the inference stage with gradient-based
updates. Not only are these approaches computationally ex-
pensive, but also they usually only improve limited kinds of
errors (e.g., the count of objects). In this work, we propose
an intervention-based mechanism to enhance the faithful-
ness of diffusion models by controlling the denoising pro-
cess. Starting with layout-conditional diffusion models, our
approach first detects incorrectly-generated/missing objects
during denoising steps. Next, a layout is constructed from
the erroneous objects (feedback). Finally, we return to an
earlier denoising step. The new layout is fed to the diffu-
sion model to obtain its latent representation. Correction
is applied by composing the new latents with the original
ones and continuing the generation process, thereby driv-
ing the generation away from erroneous directions. As ad-
ditional feedback and correction strategy, we also explore
retrieval-augmented generation to help the model recover
missing objects. We conduct experiments on VPEval and
HRS-Bench datasets and measure faithfulness across four
dimensions; presence of objects, object counts, scale of ob-
jects and spatial relations between objects. Compared to
GLIGEN, the state-of-the-art model on the VPEval dataset,
our approach significantly improves on all metrics (+6.7%
average accuracy increase). On HRS-Bench dataset, it also
outperforms existing models in count and scale metrics.

1. Introduction

Text-to-image (T2I) diffusion models have become one
of the most popular image generation models nowadays.
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(a) Examples of unfaithful generations from Dall-E 3. The images do not
reflect the correct quantity/spatial relationship of objects.
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(b) An overview of our method to improve faithfulness by error detection,
feedback, and correction.

Figure 1. Examples of unfaithful generations and a brief overview
of our method.

Given a piece of text that describes a scene, models like
Imagen [34] and DALL-E [32] are able to generate beauti-
ful images often as good as human artists. However, images
generated by diffusion models often fail to faithfully reflect
the full set of conditions specified in the text prompt. This
unfaithfulness can manifest in various forms. For example,
the generated image misses an object mentioned in the text
input, or the number of objects in the generated image and
the text prompt do not match, or the objects are generated
in locations that contradicts the prompt specification. Fig-
ure la shows examples of unfaithful generations.
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Enhancing the faithfulness of generated images involves
incorporating a variety of conditions beyond mere text
prompts. These can include layouts [22, 36], retrieved im-
age examples [5], and segmentation maps [8]. Layout-
based diffusion models have set the benchmark for faith-
ful generation [7]. To better utilize the layout, prevalent
strategies include training a fusion module that integrates
bounding box information into local visual features [38] or
designing a layout-based auxiliary loss function [12]. How-
ever, fine-tuning these models is time-consuming. To mit-
igate high cost of fine-tuning, recent studies have explored
inference-time tactics to improve generation fidelity by con-
trolling the denoising process. Most approaches in this di-
rection focus on restricting the generated objects in speci-
fied bounding boxes by steering the latent representations
from the diffusion model to a direction that minimizes their
defined auxiliary loss [3, 19,23,35] (e.g., designing the loss
as the difference between cross-attention values outside and
inside the bounding boxes to restrict the objects in speci-
fied regions). However, such approaches often require re-
peated computation of gradients during the denoising steps,
which is notably resource-intensive. Moreover, these meth-
ods typically resolve only a subset of issues because the loss
functions are only designed for single purpose, such as to
prevent blending of objects (e.g., a half-cat-half-dog ani-
mal) [23] or to fix object counts in the generated image [19].

In this paper, we propose a training-free interventive ap-
proach designed to rectify multiple types of generation er-
rors within the denoising process, thus improving the faith-
fulness of generation. First, we employ an off-the-shelf lay-
out generation model to create a layout, which serves as an
auxiliary input for the diffusion model. Next, our interven-
tion strategy (an overview shown in Figure 1b) unfolds in
three steps:

1. During the denoising stage, we apply an object detec-
tor to the noisy, intermediate output.

2. The detection results are compared to the input layout
and additional layouts, consisting of the erroneous ob-
jects are created as feedback. We also incorporate ad-
ditional feedback utilizing a retrieval-based approach
to supply reference images for missing objects.

3. The feedback layouts are fed to the model to gener-
ate their latent representations. These new represen-
tations are then composed with the latent representa-
tion of the original image via the composable diffusion
method such that the generation is steered away from
erroneous directions.

Overall, our mechanism has the following merits:

e It requires neither fine-tuning nor back-propagation
and can efficiently correct errors that have been gen-
erated in early denoising steps.

* It can be used to correct several types of errors includ-
ing missing objects, incorrect quantity, mislocated ob-
jects, and objects with wrong scale relationships.

* Our intervention-correction approach is more general;
many new methods can fit in our three-step system.

We test on VPEVAL and HRS-Bench datasets, which di-
rectly measure the faithfulness of generation in multiple as-
pects (count, spatial relationship, scale, etc). Our method
shows significant improvement over baselines on all met-
rics, and outperforms other denoising control algorithms on
all VPEVAL metrics, HRS count, and HRS scale metrics.

2. Related Works
2.1. Faithful Generation with Diffusion Models

Diffusion models can perform conditional generation in
a classifier-free manner [15]. Classifier-free diffusion mod-
els can generate images conditioned on arbitrary texts and
images. Although existing models generate aesthetically
pleasing images, they often do not accurately follow all the
details in the prompt.

To address this problem, one popular method is to fine-
tune the model with improved architecture or additional
guidance. [ | 2] applies an object detector during training and
modifies the loss inside and outside of the detected bound-
ing boxes separately. [5] retrieves reference images from
its database to help diffusion model generate correspond-
ing objects. [22, 30, 36] uses layouts which specify the lo-
cations of each object to help the generation. [13] uses seg-
mentation maps to help localize the objects in the prompt.
Besides, [21] designs a human feedback model to predict if
the generations are matched with the prompts. Then train
the diffusion model to maximize the human feedback score.

The main effort to control the generation process focuses
on modifying the latents with the help of the image-text
cross-attention maps extracted from the conditioning lay-
ers of diffusion models. For most works, a loss function is
defined and computed from the cross-attention maps. Then,
at each denoising step, the latents are updated using gra-
dient descent that minimizes the loss. Works of this type
include [3,4, 10, 19,35,37]. [3] defines the loss as the neg-
ative of maximum cross-attention values across all patches.
It helps enforce the diffusion models to generate the tar-
get objects. [19] define a counting loss, for which the num-
ber of objects is estimated from the cross-attention maps.
This helps the model to generate correct quantity of objects.
BoxDiff [35] defines the loss as the cross-attention values
outside the bounding box minus those inside the bounding
box, plus a corner constraint. It helps restrict the objects
inside their bounding boxes. Although the aforementioned
works improve the faithfulness, a limitation is that back-
propagation is performed at each denoising step, which is
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more time-consuming than forward propagation. This prob-
lem is worse when generating high-resolution images.

There are also other works trying to improve faithfulness
of image generation. [26] merges the latents of the original
generation and the reference image during the generation,
such that the reference image is fused into the main im-
age at specified locations. [23] applies an object detector on
cross-attention maps and use the detected boxes to arrange
the spatial locations of objects. This approach addresses the
object mixing problem, while less helpful in some scenarios
such as generating the correct number of objects. [20] gen-
erates multiple candidate images and uses an auto-selection
method to select the one closest to the text prompt. [27] de-
tect errors in the final image and re-initialize the noise in
the erroneous regions. [14] checks errors during the infer-
ence step and rectifies the cross-attention map of diffusion
U-Net. The recent Dall-E 3 [2] rewrites the text prompt
with details to help the model understand the prompt better.
However, it still fails to understand the location words such
as “left” and “right” [2].

In conclusion, the strategies to improve the faithfulness
is either resource-intensive or limited in the types of errors
they can correct. In comparison, our method is training-
free, backpropagation-free, and it can address a broader
spectrum of generation errors. luated along various dimen-
sions such as existence of objects, number of objects etc.

3. Methods

We follow common practice to start with layout informa-
tion for improving the faithfulness of text-to-image genera-
tors. Layout encompasses both an object’s category and its
position within an image. Typically, a layout is represented
as a sequence of labels accompanied by their bounding box
coordinates for all the objects in the image. (e.g., {“fennis
racket < x1,y1,T2,y2 >, “woman < by,c1,ba, co >7}).
The image generation task is then conditioned on both the
text prompt and the layout. With layout as additional guid-
ance, objects in the generated image are more likely to re-
side in their respective bounding boxes. Experiments in [7]
show that layout-based generation constructs images with
higher fidelity compared to text-based generation. To gen-
erate layouts from text prompt, we first apply the layout
generation model in [7], which is a Vicuna-13B [6] fine-
tuned using LoRA [16]. This model achieves 92% text-
layout alignment in human evaluations [7]. We treat these
generated layouts as ground truths for the diffusion model.

In our method, we use both the text prompts and the lay-
outs as guidance. Note that, our method can be applied
to any layout-based diffusion model, regardless of how the
layout is fused into the model. Typically, for most layout-
based diffusion models, the prompts and object phrases are
encoded by a text encoder, while the coordinates are en-
coded using Fourier embedding [28]. The features of en-

coded object phrases and coordinates are concatenated to
construct the layout features. All encoded features are sent
to the cross-attention modules in the diffusion U-Net [33].

3.1. Error Detection, Feedback Computation, and
Correction

Given that the image generation with diffusion models is
a dynamic denoising process, our key idea is to estimate
generation errors from noisy intermediate outputs during
the process, instead of waiting for the generation to com-
plete. The high-level strategy is to evaluate intermediate
de-noised outputs and send feedback signals to the model
to correct any detected generation errors. The details of our
method are shown in Figure 2. The overall process consists
of 4 stages (including standard denoising):

1. Standard Denoising: Start with normal denoising.

2. Error Detection: At time step ¢, we use an object
detector to identify all the objects in the partially de-
noised image at that step. The detector returns the
identified objects as well as their bounding boxes.

3. Feedback Computation: Compare detected objects
with the ground truth layouts, identify erroneous ob-
jects and categorize them in the following two buckets:

* False positive (FP) objects: Objects whose cat-
egories or bounding boxes do not match the
ground truth. These are objects that either should
not be generated or are misplaced or out of pro-
portion in size.

* False negative (FN) objects: Objects specified in
text prompt, present in ground truth layout but
missing in the detection results.

We create FP/FN layouts consisting of only FP/FN ob-
jects and their bounding boxes. The FP and FN lay-
outs are used as one of our feedback signals. We also
provide reference images as additional feedback to
help the model generate missing objects (Section 3.3).
Lastly, we also adjust the bounding box sizes in lay-
outs if the scale relationship is violated (Section 3.4).

4. Correction: Return to a previous step k. The FP/FN
layouts are separately fed to the diffusion model to
generate FP/FN latent representations. The FP/FN la-
tent representations are combined with the latent rep-
resentation of the original image through composable
diffusion. For FN cases, the retrieved images are fed
to the model together with the FN layout (Section 3.3).

Our whole approach above is a general recipe, for which we
discuss one instantiation in this paper. Each of these steps
are modular and can be implemented in various ways using
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different modules. Compared to approaches that fine-tune
models for improving faithfulness, our approach only modi-
fies the inference stage and therefore, significantly cheaper.
Compared to most existing inference time algorithms, our
approach does not involve expensive backpropagation step
and is able to reduce more types of errors. Differing from
methods utilized in image editing models, our approach also
reduces the time it takes to correct the error, because we do
not need to wait until the completion of denoising process
to regenerate potentially correct images.

3.2. Composition of FP/FN Latent Representations

The idea of composable diffusion was proposed in [24].
It points out that, the sampling procedure of diffusion mod-
els (Equation (1), where ¢ is the diffusion model output) and
energy-based models are functionally similar. The score-
based formulation of diffusion models illustrates that learn-
ing the noise function € can be interpreted as learning the
score function V, logpy(z), where py(x) is the data dis-
tribution. EBMs learn the energy function Ey(x) such that
V.Ep(x) x Vzlogpg(x). Hence, like energy-based mod-
els, multiple € of the diffusion model can be composed to
obtain a new score function, in a way shown in Equation (2).

zy_1 =y — €eg(x4,t) + N(0,021) (1

n
v =w — Y eg(ay,tly) +N0,071) ()

i=1
For example, given two input prompts, “a horse” and
“woods”, they can be composed as vyeg(xy,t|horse) +
~yeg(xs, tlwoods) + (1 —v)ep (x4, t| &) (assuming classifier-
free setting; v is weight parameter) and the final image will
have a horse in the woods. The concept can also be negated
to generate an image such as the one with a horse but no
woods. This method is also used by [11] and [17]. In our
method, we send the FP/FN layouts to the model as two sep-
arate inputs, aside from the original layout, and get FP/FN
latent representations. We compute a linear combination of
them together with the latent representation of the original
generation (Or4). Including the unconditioned component

eg(x,t|), the composed function is:

€o(we,t) = > wieg(wy, t]i),i € {Ori, FP,FN, @} (3)

where w; is the guidance scale. The €p(x¢,t) is on a di-
rection that: (1) Deviates from generating FP objects (by
setting wr p as negative); (2) Moves close to generating FN
objects (by making wgy positive). This helps remove the
FP objects or errors and recover the FN objects.

3.3. Image Retrieval for Missing Objects

When the model fails to generate certain objects during
the initial round of generation, simply repeating the process

with identical inputs is unlikely to succeed. In cases where
the model supports retrieval-augmented generation, we can
leverage reference images as an additional feedback to help
the model generate those objects. Typically, the reference
images are encoded by the CLIP vision encoder [31], and
categorized based on their object types (e.g., dog, person,
car). For each missing object, the corresponding visual fea-
tures under its object category are retrieved. As shown in
Figure 3, they are concatenated with the text and bounding
box coordinate features and passed to the diffusion U-Net.

3.4. Scale Adjustment

For prompts specifying scale relationships (e.g., “the ap-
ple is larger than the clock.”), we also verify the correctness
of them in our intermediate detection. To determine if the
prompts contain scale relationships, we simply search the
prompts for key words such as “bigger”, “smaller”, etc. For
the detected objects, we calculate their bounding box ar-
eas, compare their sizes and check if the scale relationships
in the text prompt are fulfilled. If there are discrepancies,
we adjust the corresponding object bounding boxes in the
ground truth layouts and use it as another feedback.

For example, given objects ObjI and Obj2, and the scale
relationship “Objl is smaller than Obj2”, if both are de-
tected in the intermediate generation, we compare the size
of their bounding boxes. If they do not fulfill the relation-
ship, we switch the true bounding box of ObjI and Obj2 if
there is no spatial relation specified in the prompt. Other-
wise, we maintain the original placements. Then, we mod-
ify the ground truth layout by shrinking the bounding box
of Objl by 25% and expanding the true bounding box of
0bj2 by 25%. For relationship “Objl is bigger than Obj2”,
we apply similar steps but expand Obj! and shrink Obj2. If
the relationship is “same”, we expand the smaller bounding
box to the same size as the larger one.

4. Experiments & Results
4.1. Experiment Setting

We evaluate our method using two datasets: VPEVAL
[7] and HRS-Bench [1]. VPEVAL consists of programs de-
signed to assess the quality of generations across five di-
mensions: object, count, spatial, scale and text rendering.
We focus on the first 4 dimensions. “object” refers to the
existence of an object. “count” evaluates the number of ob-
jects. “spatial” is the spatial relationship between objects.
“scale” is the scale relationship between objects. The per-
formance is measured by accuracy; the percentage of cor-
rectly generated images. HRS-Bench, similar to VPEVAL,
measures a broader spectrum of skills such as count, spatial,
scale, color, emotion, action, etc. We focus on count, spa-
tial and scale dimensions in this work. Prompts of HRS are
categorized into three levels of complexity: easy, medium
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Figure 2. High level overview of our proposed approach. First, a layout generation model generates a layout for the given text prompt.
Then, the prompt and the layout are both sent to the diffusion model. At denoising step %, an object detector is applied to the intermediate
generation (Stage 2). The detection output is compared to the input layout and FP/FN layouts are constructed corresponding to FP/FN
objects (Stage 3). The reference image features of the FN objects are retrieved and combined with the FN layout (Stage 3). We return to
step k£ and both layouts are sent to the model as feedback inputs. Lastly, composable diffusion method is utilized to combine the latent
representations of the original layout (Or%) and FP/FN layouts (Stage 4).
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Figure 3. Fusing retrieved reference image with object label &
bounding box coordinates.

and difficult levels. “Count” is evaluated using the F1 score
at object level. The others are measured by the percentage
of correctly generated images.

We use GLIGEN [7] as our model for layout-based gen-
eration, because GLIGEN achieves the best performance on
VPEVAL. GLIGEN also supports retrieved images as input.
We then apply our intervention mechanism to GLIGEN, and
use YOLOVSI [18] as the error detection model. The gener-
ation process runs for 50 steps. Error detection is initiated
at step 45. Upon identifying errors, the process returns to
step 1. Then the feedback is applied via retrieved refer-

ence image and compositional generation until step 25. The
detection-correction process is only conducted once. Fol-
lowing the standard practices, we employ a guidance scale
of 7.5 for original layouts. For FP/FN latents, the guidance
scale is adjusted to 3.75 to avoid drastic changes on the orig-
inal images. Moreover, each FN object is accompanied by
a single reference image. We also tune the detection timing
and the duration for which the feedback is applied, explor-
ing the balance between total runtime and accuracy.

4.2. Evaluation Results

We apply our method to the GLIGEN model and com-
pare its performance to the unmodified version. Other mod-
els [27,29,30,35] are also included in the comparison.

Table 1 shows the results on VPEVAL. With our method,
GLIGEN shows notable improvements on count (+5.3%),
spatial (+9%) and scale (+11.6%). Our method also out-
performs other approaches by a large margin on these di-
mensions. Table 2 shows the results on HRS-Bench. We
report the accuracy only on prompts at easy level, because
as stated in the HRS paper [1], the prompts of medium and
difficult level are so complex that most models have nearly
zero accuracy on spatial and scale subsets. In Table 2, our
method improves GLIGEN by 10.2% on count, 4.5% on
spatial and 1.7% on scale. Our method outperforms other
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Model Object‘ Count‘ Spatial ‘ Scale ‘ Avg

Detectors ‘ Object ‘ Count ‘ Spatial ‘ Scale

GLIGEN | 97.5 | 747 533 | 289 | 63.6
Dalle-Mega | 94.0 | 45.6 170 | 85 41.3
SDXL 975 | 513 428 | 226 | 53.6

[35] 97.0 | 745 58.3 29.9 64.9
[27] 97.3 78.5 57.1 29.6 | 65.6
[30] 98.5 66.6 534 | 30.7 62.3

Ours 98.3 | 80.0 623 | 405 | 70.3

Table 1. Model comparisons on VPEval.

Model ‘ Count ‘ Spatial ‘ Scale

GLIGEN 73.4 54.2 61.1
DALLE2 | 819 28.3 29.9

[35] 81.7 55.7 55.7
[29] 71.8 54.2 39.7
[27] 83.8 60.8 56.3

Ours 84.6 58.7 62.8

Table 2. Model comparisons on HRS.

Model | Time (s)
GLIGEN 7.15
[35] 18.69
[27] 22.55
Ours(fastest/reported) | 12.62/16.63

Table 3. Running time comparison.

works by a large gap on both datasets. In Figure 4 and 5,
we show examples generated by GLIGEN with and without
our intervention-based generation approach. These figures
illustrate the errors that the original model exhibits but get
fixed by our approach. Lastly, in Appendix, we also include
a detailed analysis, show more results/examples and com-
pare our method with error correction via image editing.

4.3. Accuracy-Latency Tradeoff

A key consideration on our evaluation is balancing run-
time latency with faithfulness of generation. The incorpo-
ration of a detection model and reverting to an earlier step
enhances faithfulness but at the expense of increased over-
all running time of the algorithm. In Table 3, we compare
the running times of GLIGEN alone and GLIGEN with our
method for the fastest setting and the setting in Table 1 and
Table 2. Despite our method takes longer time, it remains
more efficient than other methods.

There are two critical hyperparameters: detection timing
and the control duration. Early detection on noisier images
can incur more errors, whereas later detection, though more
accurate, extends the overall running time. Longer con-
trol duration can lead to more faithful generations, albeit
at the expense of increased running time. Figure 6 shows
the VPEVAL performance (measured by average accuracy

GroundingDINO | 97.00 | 80.30 | 57.20 | 37.90
YOLOVSI 97.75 | 81.10 | 59.10 | 36.90

Table 4. Ablation study on different detectors, evaluated on VPE-
VAL. Retrival is not applied.

Detectors ‘ Object ‘ Count ‘ Spatial ‘ Scale
No Retrival | 97.8 | 81.1 | 59.1 | 369

Retrival 98.3 80.0 62.3 40.5

Table 5. Ablation study on image retrival, evaluated on VPEVAL.

of object, count, spatial and scale) under different detection
time points. For t = 15 and ¢t = 25, the results are close,
which is probably because the detection accuracy is low at
early stage. However, accuracy improves when the detec-
tion is postponed to t = 35 and ¢t = 45. Delaying the de-
tection by every 10 steps results in an increase in the mean
running time of approximately 1.2s-1.5s.

Figure 7 shows the average VPEVAL accuracy under
different control durations. When the length increasese
from 15 to 25, the average accuracy increases by around
1%. A notable observation is that there is no significant
improvement in accuracy when the control duration is ex-
tended further. This can be attributed to the fact that by
the later stages, the key features of objects have already
been rendered, diminishing the necessity for additional con-
trols. Furthermore, when the control duration increases by
10 steps, the mean running time rises by around 1.4s-1.8s.

Lastly, note that in Figure 6 and Figure 7, even we use
the fastest settings, the average accuracy 66.3 is still higher
than the baseline GLIGEN (63.6) and other models.

4.4. Ablation Studies

We run ablation on detectors. We change the detec-
tor to GroundingDINO [25] and run our method on VPE-
VAL. The results are shown in Table 4. YOLOV8I performs
slightly better than GroundingDINO on average.

We also run ablation on image retrival. Table 5 shows
the VPEVAL results with/without retrival. Compared with
no retrival, using image retrival shows improvement on ob-
ject, spatial and scale. In Appendix, we also show images
generated with and without retrival.

5. Conclusion and Discussion

In conclusion, we propose a strategy to control the de-
noising process of diffusion models through monitoring and
intervention. The generation errors are early detected and
corrected during the generation process itself. Results on
VPEVAL and HRS demonstrate that our approach provides
significant improvement.

One concern of our work might be the sacrifice of run-
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GLIGEN Corrected
“an image of four wine glasses.”

GLIGEN Corrected
“two potted plants.”

GLIGEN Corrected
“an image of three cakes.”

GLIGEN Corrected
“a photo of one apple.”

GLIGEN Corrected
“a sports ball is to the left of
an umbrella.”

GLIGEN Corrected
“a sheep is to the right of
a baseball glove.”

GLIGEN Corrected
“a handbag is to the right of an apple.”

GLIGEN Corrected
“a boat is above an orange.”

Figure 4. Generation examples after applying intervention and composition.

tial generations contain errors. Our time-accuracy tradeoff
is acceptable for error correction. For future research, the
time could be further reduced by improving the detection
accuracy on noisy images and tuning the guidance scales.

ning time. Although we use around 9s in exchange for
+6.7% average accuracy, our method is still faster than other
existing works. On the other hand, in real-world applica-
tions, one may apply our method only to cases whose ini-
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GLIGEN Corrected
“an orange and a truck. the orange
is smaller than the truck.”

GLIGEN Corrected
“a laptop and a cat. the laptop
is smaller than the cat.”

GLIGEN Corrected
“a laptop and a frisbee. the laptop
is smaller than the frisbee.”

GLIGEN Corrected
“an elephant and a bottle. the elephant
is smaller than the bottle.”

Figure 5. Generation examples after applying intervention and composition.

Figure 6. Average VPEVAL accuracy comparison for detecting at
different time step (total t=50) and controlling from t=0 to t=25.

To compose the FP/FN generation with the original gen-
eration, we use linear combination with preset weights. [9]
pointed out that, the linear combination is a mathematical
approximation of the true score of the diffusion target and
sometimes it leads to subpar generations. At each denois-
ing step, it uses Markov Chain Monte Carlo to get the final
score function. However, we found that it is not applica-
ble to high-resolution images because it requires extensive
backpropagation steps, which is expensive on large images.
Developing a more accurate and time-efficient way of com-

Figure 7. Average VPEVAL accuracy comparison for applying
control for various length of steps. Detection is at t=45.

position would be a direction of future research.

In our work, we operate under the assumption that the
generated layout is correct in the majority of cases. How-
ever, the accuracy peaks around 90% on average [7], setting
a performance ceiling for our strategy. Besides improving
the layout generation model, a more promising direction
would be enabling the model to generate correct images de-
spite incorrect layouts. The diffusion model should learn if
the input layout can be trusted or not. If not, there should
be an alternative method to generate the correct image.
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