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Abstract

We propose CLIPSynth, a self-supervised text-queried
sound synthesis model that can be trained with unlabeled
videos in the wild. During training, the CLIPSynth model
first projects an image (a video frame) to a text-image embed-
ding space using the contrastive language-image pretraining
(CLIP) model, and then synthesizes a mel spectrogram using
a diffusion model conditioned on the image embedding. At
inference time, we perform a zero-shot modality transfer
by projecting a text query to the same text-image embed-
ding space, and synthesize the text embedding into a mel
spectrogram. We evaluate CLIPSynth on the MUSIC and
VGG-Sound datasets with both objective evaluation metrics
and a subjective listening test. Our experimental results
show that CLIPSynth can generate realistic instrumental
and generic sounds relevant to the input text queries. More-
over, CLIPSynth outperforms a retrieval-based baseline on
MUSIC in terms of the Fréchet audio distance.

1. Introduction
Prior work has shown that modern machine learning mod-

els can learn text-to-sound synthesis using a large amount of
audio-text pairs as training data [9, 15]. However, we argue
that humans do not learn the sounds of an object this way.
Unlike machines, humans incorporate multi-sensory inputs
and learn the sounds of an object by associating the visual
and auditory inputs [1, 2]. For example, by watching a cat
meowing, humans can associate the meowing sound to the
“sounding object,” i.e., the cat here. Meanwhile, humans
learn that this object is called a “cat” elsewhere. Motivated
by this observation, we explore a more human-like approach
for text-queried sound synthesis. In this paper, we propose a
new self-supervised model for text-queried sound synthesis
that uses naturally occurring learning signals such as videos
more effectively without additional human annotations.

Inspired by [4], we propose to learn the desired text-
audio correspondence by leveraging the image modality as a
bridge. We adopt the contrastive language-image pretraining
(CLIP) model [13] to handle the text-image correspondence
and learn the image-audio correspondence from unlabeled
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Figure 1. An illustration of the proposed CLIPSynth model.

videos, which are easier to acquire than paired text-audio
data. Built upon this idea, we propose the CLIPSynth model
for self-supervised text-queried sound synthesis. The pro-
posed model consists of a query encoder followed by a syn-
thesizer: the query encoder is a frozen CLIP model that
encodes an image frame from a video to the joint text-image
embedding space at training time; the synthesizer is a condi-
tional denoising diffusion model [5, 12] that learns to gen-
erate the mel spectrogram of the audio of the same video
conditioned on the query embedding. To the best of our
knowledge, the proposed CLIPSynth model represents the
first self-supervised text-queried sound synthesis model.

To evaluate the proposed model, we compute objective
evaluation metrics and conduct a subjective listening test
following [9, 15]. We compare our proposed models against
several variants and baseline models on the MUSIC [16] and
VGG-Sound [3] datasets. We adopt the Hifi-GAN model [8]
to synthesize the generated spectrograms into waveforms.
Our experimental results show that the proposed model can
generate realistic instrumental and generic sounds relevant
to the input text queries. Moreover, CLIPSynth outperforms
a retrieval-based baseline on MUSIC in terms of Fréchet
audio distance.

Our contributions can be summarized as follows:

• We propose the first text-queried sound synthesis model
that can be trained using only unlabeled videos.

• We show we can learn audio-textual correspondence using
relatively easy-to-acquire audio-visual data by leveraging
the zero-shot modality transfer capability of CLIP.

Audio samples can be found on our demo website.1

1https://salu133445.github.io/clipsynth/

https://salu133445.github.io/clipsynth/


2. Method

2.1. CLIPSynth

Our architecture is inspired by CLIPSep [4], a framework
designed for sound separation that learns the text-audio cor-
respondence from unlabeled videos with the help of CLIP.
As illustrated in Figure 1, the proposed framework consists
of a query encoder and a conditional synthesizer. The query
encoder E encodes the input query q into a condition vector
c = E(q). The synthesizer S synthesizes the mel spectro-
gram x̃0 conditioned on the condition vector c. We adopt the
CLIP model [13] as the query encoder, and use the improved
denoising diffusion model [12] as the synthesizer. During
training, we feed an image qimage (e.g., a photo of a guitar)
extracted from a video to the encoder, and the synthesizer
is trained to predict the mel spectrogram of the associated
audio. t inference time, instead of an image, we feed a
text query qtext (e.g., “a photo of playing guitar”)
that describes the sound we want to synthesize to the query
encoder. Leveraging the joint language-image embedding
of the pretrained CLIP model, the query embedding from
text input should be close to the embeddings of the images
corresponding to the text; i.e., E(qimage) ≈ E(qtext).

Instead of modeling raw waveforms directly, we propose
to first synthesize mel spectrograms with the diffusion model
introduced above, and then generate the synthesized mel
spectrograms into waveforms using the Hifi-GAN model [8].
This way, we can base the diffusion model on a conditional
U-Net [14] following [5], where the condition vector c is
concatenated to the output features of each U-Net layer and
then passed to the next layer. Moreover, we feed the texts to
the CLIP text encoder in the form of “a photo of {query}”
to reduce the modality gap as suggested by [13].

Implementation We used the pretrained CLIP model pro-
vided by [13] as it is without any further finetuning. Follow-
ing [12], we used the hybrid learning objective and cosine
noise schedule to train all the diffusion models. We used 4K
diffusion steps during training and 1K steps during inference.
We trained each model using a single NVIDIA A100 GPU.
For the MUSIC dataset, we trained all the models for 100K
steps, which took half a day, as the model tend to converge
in 100K steps. For the VGG-Sound dataset, we trained all
the models for 500K steps, which took two days. We trained
the Hifi-GAN models for 500K steps on both datasets, which
took three days. We used the AdamW optimizer for training
the CLIPSynth model using the hyperparameters suggested
by [12]. We trained the Hifi-GAN models from scratch using
the implementation and hyperparameters provided by [8].

3. Experimental Setup

Data. Our training and test data consists of the MU-
SIC [16] and VGG-Sound [3] datasets. MUSIC contains

more than 1,164 full-length instrument-playing videos down-
loaded from YouTube, covering 21 instrument classes. Since
the MUSIC dataset contains full-length videos, we sliced the
videos into 10-second chunks for training, and we ended up
with 19,809 10-sec videos (55 hours in total) after the pre-
processing. VGG-Sound contains 199,467 10-sec YouTube
videos across 310 classes, and 166,702 videos (463 hours
in total) remained usable after the pre-processing. Over-
all, VGG-Sound is more diverse yet noisy than MUSIC,
and videos in VGG-Sound often contain much off-screen
noise, including narration and background noise. For the pre-
processing, we used a sampling rate of 16,000 Hz. For the
spectrogram computation, we used a filter length of 2,048,
a hop length of 1,024 and a window size of 2,048 in the
short-time Fourier transform (STFT). We used 64 Mel bands
so that we have 64-by-64 mel spectrograms. Each mel spec-
trogram encodes 4.16 seconds of audio.

Evaluation metrics. For the objective evaluation metrics,
we follow Diffsound [15] and AudioGen [9] and use Fréchet
Audio Distance (FAD), which has been shown to correlate
well with human auditory perception [7]. FAD computes
the Fréchet distance between distributions of deep features
extracted by a pretrained audio classifier on the machine-
generated samples against real audio samples. A lower FAD
suggests that the machine-generated samples are more simi-
lar to the ground truth samples. In addition, following [11],
we compute the Fréchet Inception Distance (FID) on the
generated mel spectrograms.

Baseline models. We wanted to compare our proposed
model with the Diffsound [15] and AudioGen [9] models.
However, the code released in [15] is incomplete and we
cannot reproduce the results. The authors in [9] has not
released the code at the time of submitting this work. Thus,
we compare our proposed model against several baselines we
implemented. First, we note that the proposed CLIPSynth
model can be trained in multiple ways. In addition to the
fully self-supervised proposed CLIPSynth model which we
train on video frames in the wild, we consider two variants:
• CLIPSynth-Text shares the same network architecture

as CLIPSynth but is trained on text queries.
• CLIPSynth-Hybrid has the same network architecture as

CLIPSynth but is trained on both text and image queries.
Note that both CLIPSynth-Text and CLIPSynth-Hybrid re-
quire audio-text pairs for training. Hence, they are not self-
supervised models. Moreover, we consider the following
baseline models:
• CLIPRetriever finds the image that is closest to the input

text query in the CLIP embedding space and returns the
associated audio of that image. Note that this is a retrieval-
based model, not a generative model.
In addition, we also include the FAD values for Hifi-GAN

reconstructed audios, which are obtained by extracting mel



Table 1. Results of the objective evaluation. The colors indicate a lower or higher FID/FAD than that of CLIPSynth.

Model Generative
Unlabeled
data only

Query Type MUSIC VGG-Sound

Training Test FAD↓ FID↓ FAD↓ FID↓

CLIPSynth (proposed) ✓ ✓ Image Text 6.30 40.12 8.68 34.63

CLIPSynth-Text ✓ × Text Text 10.32 22.00 6.78 27.50
CLIPSynth-Hybrid ✓ × Image+Text Text 6.21 22.62 5.83 25.88

CLIPSynth ✓ ✓ Image Image 2.41 19.30 5.49 24.56
SpecVQGAN [6] ✓ ✓ Image Image 33.45∗ - 7.70∗ -

CLIPSynth-Text ✓ × Text Image 25.96 47.92 8.92 38.44
CLIPSynth-Hybrid ✓ × Image+Text Image 4.92 20.52 5.89 25.88

CLIPRetriever (retrieval-based) × × - Text 10.36 - 2.43 -
Hifi-GAN reconstructions × - - - 2.64 - 4.09 -
∗We used a pretrained model trained on VGG-Sound released by the authors since we could not reproduce their results when training the model from scratch.

spectrograms of the ground truth audios and converting them
back to waveforms using Hifi-GAN.

4. Results
4.1. Quantitative results

To quantitatively evaluate the proposed system against
the baseline models, we converted the class names into text
queries using a query template for the text-queried mod-
els. Specifically, we use the query template “a photo of
playing {query}” on MUSIC and “a photo of {query}”
on VGG-Sound . For the image-queried models, we ran-
domly extracted frames from the test videos as the image
queries. We then used these randomly sampled queries to
generate 512 samples for each model as this size has been
shown sufficient to produce a stable FAD score [7]. Finally,
we computed the FAD score between the set of generated
audio samples and the set of all audio tracks in the entire
test set (10% of the dataset). Similarly, we computed the
FID score between the set of generated mel spectrograms
(treated as images) and the set of mel spetrograms (treated
as images) of all test audio samples.

We show in Table 1 the objective evaluation results. In
general, we see that a lower FAD score, which is computed
on the generated waveforms, usually comes with a lower
FID score, which is computed on the generated mel spectro-
grams. We see that the proposed CLIPSynth model achieves
an FAD of 6.30 and 8.68 when tested with text-queries on the
MUSIC and VGG-Sound datasets, respectively. Moreover,
CLIPSynth outperforms CLIPRetriever, a retrieval-based
baseline, on MUSIC. Further, the Hifi-GAN reconstructed
audio achieves an FAD score of 2.64 and 4.06 on the MUSIC
and VGG-Sound datasets, suggesting that the main perfor-
mance bottleneck lies in the synthesis model rather than the
Hifi-GAN model. CLIPSynth outperforms the SpecVQGAN
model [6] on VGG-Sound when tested with image queries.

Further, we observe a significant zero-shot modality trans-

fer gap when the training and test modalities differ. This
is consistent with a recent study that shows a significant
modality gap inside the learnt language-image embedding
space [10]. We see that the CLIPSynth model trained on
image queries achieves an FAD of 2.41 and 5.49 when tested
with the same modality on the MUSIC and VGG-Sound
datasets. However, it only achieves an FAD of 6.30 and
8.68 when tested with text queries, representing an FAD
difference of 3.89 and 3.19. Similarly, while the CLIPSynth-
Text model, which is trained using text queries, achieves
an FAD of 10.32 and 6.78 with text queries on the MUSIC
and VGG-Sound datasets, it only achieves an FAD of 25.96
and 8.92 when tested with image queries, representing an
FAD difference of 15.64 and 2.14. By training the model
with both image and text queries, the CLIPSynth-Hybrid
achieves a smaller modality gap of 1.29 and 0.06 in FAD on
MUSIC and VGG-Sound as compared to CLIPSynth and
CLIPSynth-Text.

4.2. Subjective listening test

In addition to the objective evaluation metrics, we con-
ducted a subjective listening test to assess the performance of
our proposed model against several baselines. We recruited
30 evaluators via Amazon Mechanical Turk. Each survey
participant was instructed to listen to 10 pairs of randomly
selected audio samples generated by two different models
using the same text query. In this pairwise A/B test, the
survey participant was asked to select the preferred audio
samples in terms of audio quality (regardless of relevance
to the queries), relevance (to the queries), and noise lev-
els. We considered five text-queried models: CLIPSynth,
CLIPSynth-Text, CLIPSynth-Hybrid, and CLIPRetriever. To
aggregate the results, we gave a score of 1 whenever a model
won in an A/B test and 0 when it lost; both models got a
score of 0.5 for a draw. We computed the average score each
model received. Moreover, we fed 64-by-128 noise arrays to
the model to generate longer music samples of 8.32 seconds



Table 2. Results of the subjective listening test.

Model
Unlabeled
data only

Query Type MUSIC VGG-Sound

Training Test Quality↑ Relevance↑ Noise↓ Quality↑ Relevance↑ Noise↓

CLIPSynth (proposed) ✓ Image Text 0.511 0.473 0.481 0.500 0.388 0.619

CLIPSynth-Text × Text Text 0.405 0.505 0.510 0.405 0.505 0.500
CLIPSynth-Hybrid × Image+Text Text 0.434 0.447 0.531 0.431 0.448 0.547

CLIPRetriever ✓ - Text 0.724 0.653 0.398 0.750 0.712n 0.297

duration for evaluation purposes.
We report in Table 2 the scores of the subjective listening

test. First, we can see that the retrieval-based CLIPRetriever
model significantly outperforms the other models on both
datasets. Second, the proposed CLIPSynth model outper-
forms CLIPSynth-Text in terms of audio quality on both
datasets. However, on the VGG-Sound dataset, CLIPSynth
obtains a low score on the relevance criterion. We hypothe-
size that this is partly due to the noisiness of VGG-Sound,
which poses a challenge in learning the desired text-audio
correspondence. However, on the MUSIC dataset, the pro-
posed CLIPSynth model outperforms CLIPSynth-Hybrid in
the relevance criterion. We note that CLIPSynth is the only
self-supervised model in this comparison, and it was not
always beaten by other systems in the A/B tests.

5. Conclusion
We presented CLIPSynth, a new self-supervised model

for text-queried sound synthesis. We base the CLIPSynth
model on CLIP and a conditional diffusion model to syn-
thesize mel spectrograms from an input text query. We ex-
amined the proposed model on the clean MUSIC and noisy
VGG-Sound datasets. The subjective and objective evalua-
tions have demonstrated the effectiveness of this approach.

Limitations. We have observed several limitations of the
proposed model. First, off-screen sounds pose a challenge in
the proposed setting as the model will try to imagine some-
thing invisible from the image inputs, which increases the
undesired zero-shot modality gap when transitioning from
image queries at training time to text queries at inference
time. Moreover, the proposed system cannot handle purely
audio-relevant queries (e.g., “loud,” “quiet,” “high-pitched”
and “low-pitched”) as they have little meaning in the visual
domain. Still, we argue that in-the-wild videos are good
candidates as training data for learning text-audio or image-
audio correspondence as they provide rich information.

Future Work There are several future directions we would
like to explore. First, we want to equip our model with
the ability to generate different styles of outputs. Second,
we want to enable combinatory prompts (e.g., “{query 1}
and {query 2}”) and blending tones (e.g., “piano + gui-
tar”). Moreover, prior work has also observed a significant

modality gap in multi-modal contrastive representation learn-
ing [10]. By incorporating their proposed techniques, we can
reduce the modality gap and consequently improve the per-
formance of our proposed model. Finally, the self-supervised
learning framework proposed in this work can be scaled to
a larger collection of videos in the wild, and we leave this
computationally-intense extension to future work.
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