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Abstract The lack of correlations at the long-wavelength
scales of the cosmic microwave background spectrum is a
long-standing puzzle and it persists in the latest Planck data.
By considering the Hartle–Hawking no-boundary wave func-
tion as the initial condition of the inflationary universe, we
propose that the power suppression can be the consequence
of a massive inflaton, whose initial vacuum is the Euclidean
instanton in a compact manifold. We calculate the primordial
power spectrum of the perturbations, and find that as long as
the scalar field is moderately massive, the power spectrum is
suppressed at the long-wavelength scales.

1 Introduction

Thanks to numerous cosmological observations, now we can
investigate the universe with high precisions. One of the most
important observational objects for the precision cosmology
is the cosmic microwave background (CMB). The recent
observational result of the CMB two-point function from the
Planck mission [1] is well described by the �CDM model
and the single-field inflation scenario (to which we refer as
the “standard scenario” hereafter). This demonstrates a great
success of the inflation scenario [2–4].

However, it is also fair to say that the observed two-point
correlation function at long-wavelength scales has a statis-
tical tension with the standard scenario. More precisely, the
observed spectrum at the long-wavelength scales shows a
lack of correlation [5]. Although such a tension is not sta-
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tistically significant yet, it can be confirmed or falsified by
upcoming experiments. In either conclusion, the power sup-
pression problem can shed lights on the physics beyond the
inflationary cosmology.

If the power suppression at long-wavelength scales is con-
firmed by future observations, what will be the cause of it?
One candidate is the physics at the beginning of the inflation.
Within the context of the semi-classical quantum field the-
ory and general relativity, the power suppression can occur
if one of the two following possibilities happens in the early
stage of the inflation [6]. First, the phantom equation of state
(and the super-inflationary expansion due to the phantom-
ness) can induce the power suppression. Second, a positive-
pressure era (with the equation-of-state parameter w > 0),
such as the kinetic-energy-dominated era, at the early stage of
inflation can cause the power suppression. Both scenarios are
logically possible, but both ideas have their own problems.
For the phantom inflation scenario, it is very difficult to con-
struct a viable theory for the phantom matter. For the positive-
pressure era, the power suppression highly depends on the
choice of the vacuum state. In the de Sitter space, we have a
canonical choice of the vacuum – the Bunch–Davies vacuum
[7], but in the positive-pressure era, there is no such a canon-
ical vacuum. Moreover, if we consider an eternally inflating
background (and the consequent Bunch–Davies vacuum),
then even though the universe evolves toward a positive-
pressure era, the power suppression will not be realized [6].

The existing difficulties of having a consistent explana-
tion for the power suppression may imply that its origin does
not lie in the semi-classical physics, but in the quantum the-
ory of gravity. Can we explain the power suppression by
quantum gravitational effects? Indeed, there has been sev-
eral models explaining the power suppression from quantum
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gravity [8–16] although almost all discussions have been lim-
ited to the flat Friedmann–Robertson–Walker universe. For
example, according to the loop quantum cosmology, quan-
tum gravitational effects can induce an effective phantom
matter in the deep trans-Planckian regime. The phantomness
thereof can explain the CMB power suppression as well as
supporting the scenario of the big bounce universe [17].

In order to investigate the wave function of our uni-
verse and the power suppression problem, we will rely on
the Hartle–Hawking wave function, or the so-called no-
boundary wave function [18]. This wave function is one of the
proposals to the boundary condition of the Wheeler–DeWitt
equation [19]. It is a path integral over the Euclidean com-
pact manifolds, and can be approximated by the method of
steepest descent. Under such approximation, we can then
describe the wave function as a sum of the Euclidean instan-
tons, where each instanton should eventually be Wick-rotated
into the Lorentzian signatures [20,21] and approach real-
valued functions [22–26]. By integrating the Lagrangian, one
can estimate the probability for the history described by each
instanton.

Following the work of Halliwell and Hawking [27], one
can introduce perturbations to the background instanton solu-
tion. These perturbations also carry their own canonical
degrees of freedom. Although in general it is very difficult to
track their coupled evolution, one can consistently consider
various modes separately as long as the perturbations stay in
the linear regime. The probability distribution of the magni-
tude of each perturbation mode can then be calculated, and
the expectation values of these modes, or equivalently, the
power spectrum, can therefore be determined.

In this paper, we devote several sections to revisit the
formalism of Halliwell and Hawking. Using the method of
Laflamme [28], we can define the wave function for the
Euclidean vacuum. The Euclidean vacuum gives the scale-
invariant power spectrum at short-wavelength scales, hence
consistent with the choice of the Bunch–Davies vacuum [7]
at small scales. On the other hand, at the long-wavelength
scales, the power spectrum is enhanced due to the curvature
of the manifold. All these results have been known in the
literature and consistent with the independent calculations
from quantum field theoretical techniques [29,30]. How-
ever, to our best knowledge, it was not emphasized that the
power spectrum can be suppressed by introducing the poten-
tial term. In this paper, we include analytical and numerical
details for the power suppression due to the potential term of
the inflaton field.

The paper is organized as follows. We introduce the min-
isuperspace model and the no-boundary wave function in
Sect. 2. We calculate the contributions from the perturbations
and the power spectrum in Sect. 3. We solve the equations of
motion of the perturbations and investigate the effect of the
mass of the scalar field in Sect. 4. We conclude in Sect. 5.

We use the Planck units (h̄ = c = G = 1) in this paper.

2 Minisuperspace model

In this section, we describe the Hartle–Hawking wave func-
tion in the minisuperspace model [20,21]. Especially, we
focus on the background-level solution.

The ADM metric for the homogeneous closed universe is

ds2 = σ 2
[
−(N̄ 2 − N̄i N̄

i )dλ2 + 2N̄i dx
i dλ

+ h̄i j dx
i dx j

]
, (2.1)

where σ is a constant normalization, and

N̄ = N0(λ), (2.2)

N̄i = 0, (2.3)

h̄i j = a2(λ)γ̄i j , (2.4)

γ̄i j dx
i dx j = dχ2 + sin2 χ(dθ2 + sin2 θdϕ2) = d	2

3.

(2.5)

The action for a scalar field in the close universe is

I = 1

16π

∫
d4x

√−gR

+
∫

d4x
√−g

[
−1

2
∂μ�∂μ� − V (�)

]
, (2.6)

where

V (�) = V0 + 1

2
m2�2. (2.7)

Defining the variables

φ =
√

4π

3
�, (2.8)

Ṽ (�) = 8πσ 2

3
V (�), (2.9)

and integrating over the compact geometry, the action can be
expanded as

I [N0, a, φ] = 3πσ 2

4

∫
dλ N0

{
−a

(
a′

N0

)2

+ a

+ a3

[(
φ′

N0

)2

− Ṽ (�)

]}
, (2.10)

where the primes denote the derivatives against λ. It is con-
venient to further define

Ṽ0 = 8πσ 2

3
V0, (2.11)
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m̃ = σm, (2.12)

so that

Ṽ = Ṽ0 + m̃2φ2. (2.13)

The no-boundary wave function can be written as the path
integral,

� =
∫

DâDφ̂DN̂ e− 1
h̄ Î [â,φ̂,N̂ ], (2.14)

where â, φ̂, and N̂ are the corresponding fields in the
Euclidean metric,

ds2 = σ 2
[
N̂ 2

0 dλ2 + â2d	2
3

]
, (2.15)

obtained from the Lorentzian one by substituting N0 by −i N̂0

and adding hats to other fields for clarity. The Euclidean
action is taken as Î = −i I |N0=−i N̂0

:

Î = 1

16π

∫
d4x
√

+ĝ R̂

+
∫

d4x
√

+ĝ

[
−1

2
∂μ�̂∂μ�̂ − V (�̂)

]
. (2.16)

After integration, we have

Î [N̂0, â, φ̂] =3πσ 2

4

∫
dλ N̂0

{
−â

(
â′

N̂0

)2

− â

+ â3

⎡
⎣
(

φ̂′

N̂0

)2

+ Ṽ (�̂)

⎤
⎦
⎫⎬
⎭ . (2.17)

Doing variation with respect to N̂0, we obtain the Hamil-
tonian constraint,

˙̂a2 − 1 + â2
[
− ˙̂

φ2 + Ṽ (�̂)
]

= 0, (2.18)

where dots denote derivatives against τ , which is defined by

dτ = N̂0dλ. (2.19)

Using the steepest descent approximation, the wave func-
tion is dominated by the extreme path (âext(τ ), φ̂ext(τ )) that
satisfies

δ Î

δâ
= 0, (2.20)

δ Î

δφ̂
= 0, (2.21)

which are

¨̂a + 2â ˙̂
φ2 + âṼ (�̂) = 0, (2.22)

¨̂
φ + 3

˙̂a
â

˙̂
φ − 1

2

∂ Ṽ

∂φ̂
= 0, (2.23)

respectively. Note that the Hamiltonian constraint (2.18) is
used when deriving the equations above.

To solve â(τ ), we consider the case in which ˙̂
φ2 is negli-

gible, and combine (2.18) and (2.22) to obtain

â ¨̂a − ˙̂a2 + 1 = 0. (2.24)

The “no-boundary” boundary condition at τ = 0 sets â(0) =
0. To keep (2.23) finite, we also require ˙̂

φ(0) = 0. Then by
the Hamiltonian constraint (2.18) we know ˙̂a(0) = 1. The
only free initial conditions left are the real and imaginary
parts of φ̂(0).

Equation (2.24) has four solutions,

â(τ ) = ± 1

H0
sin [H0(τ − τ0)] , (2.25)

â(τ ) = ± 1

H0
sinh [H0(τ − τ0)] . (2.26)

For physical solutions we should pick the plus sign. By
requiring â(0) = 0 we have τ0 = 0, and automatically
we have consistently ˙̂a(0) = 1. In order to connect to the
Lorentzian space, which requires â′(τconnect) = 0, the quali-
fied solution is

â(τ ) = 1

H0
sin(H0τ). (2.27)

The solution connects to the Lorentzian space at τconnect =
π/2H0. In Lorentzian space, we define

dt = N0dλ, (2.28)

therefore dτ = idt . We can then describe the Euclidean
trajectory by τ = 0 to π/2H0, and the Lorentzian one by the
complex contour

τ = π

2H0
+ i t (2.29)

with t > 0. We then have the Lorentzian solution

a(t) = 1

H0
cosh(H0t). (2.30)
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3 Perturbation spectrum from the wave function

In this section, we include the perturbations of the matter
field as well as the metric on top of the background-level
solution. By using the steepest decent approximation again,
we can calculate the expectation values of perturbations. This
section is a revisit of the paper of Halliwell and Hawking [27].

The perturbations to the spatial part of the metric in the
S3 × R closed universe can be organized as

hi j = a2γi j ,

γi j = γ̄i j + εi j , (3.1)

where εi j denotes

εi j =
∑
n,l,m

[√
6qnlm

1

3
γ̄i j Qnlm + √

6bnlm(Pi j )nlm

+ √
2conlm(Soi j )nlm + √

2cenlm(Sei j )nlm

+ 2donlm(Go
i j )nlm + 2denlm(Ge

i j )nlm

]
, (3.2)

and

Pi j = 1

n2 − 1
∇i∇ j Q + 1

3
γ̄i j Q. (3.3)

Here the covariant derivatives are with respect to γ̄i j . The
first, second, and third lines of (3.2) denote the scalar, vec-
tor, and tensor perturbations, respectively. Suppressing the
spherical coordinate indices, n, l, m, the coefficients, q, b,
co, ce, do, de, are time dependent, while the basis, Q, Pi j ,
Soi j , S

e
i j , G

o
i j , G

e
i j , are space dependent.

The perturbations to the lapse and the shift functions are

N = N0

[
1 + 1√

6
gnlmQnlm

]
, (3.4)

Ni = a

[
1√
6
knlm(Pi )nlm + √

2 jnlm(Si )nlm

]
, (3.5)

where

Pi = 1

n2 − 1
∇i Q. (3.6)

Finally, the perturbation to the scalar field is

� =
√

3

4π
φ +

√
3π

2
fnlmQnlm . (3.7)

Among the perturbations, gnlm , knlm , and fnlm are the scalar
ones, while jnlm is the vector one.

The action can be expanded around the background fields
to the second order as the sum of the eigenmodes [27],

I =I0(a, φ̄, N0)

+
∑
n,l,m

Inlm(a, φ̄, N0; qnlm, . . . , knlm). (3.8)

Choosing the gauge in whichqnlm = bnlm = 0, the constraint
equations can be obtained by variating the quadratic part of
the perturbation action with respect to gnlm and knlm ,

gnlm = 3
(n2 − 1)H φ̇ fnlm + φ̇ ḟnlm + m̃2φ fnlm

(n2 − 4)H2 + 3φ̇2
, (3.9)

knlm = 3(n2 − 1)N0a

× H φ̇ ḟnlm + Hm̃2φ fnlm − 3φ̇(−H2 + φ̇2) fnlm
(n2 − 4)H2 + 3φ̇2

.

(3.10)

Here the dots denote derivatives against the Lorentzian time
t . The equation of motion for fnlm can be obtained by the
variation with respect to fnlm ,

f̈nlm + 3H ḟnlm +
(
m̃2 + n2 − 1

a2

)
fnlm

= −2m̃2φgnlm + φ̇ġnlm − φ̇knlm
N0a

. (3.11)

The amplitude of the perturbations of the scalar field, δ�,
can be obtained through calculating the expectation value
with the no-boundary wave function, focusing on the part
relevant for fnlm . Using the steepest descent approximation,
the Euclidean action Î in the wave function receives contri-
butions mostly from the solution to the equations of motion,
evaluated to be

Î ≈ a3

2i N

(
fnlm

d fnlm
dτ

− dφ

dτ
gnlm fnlm

)

= 1

2
a3
(
fnlm

d fnlm
dt

− dφ

dt
gnlm fnlm

)
. (3.12)

We therefore have

�[ fnlm] ≈ Bnlm exp

[
−1

2
a3 ( fnlm ḟnlm − φ̇gnlm fnlm

)]
,

(3.13)

where the dots denote derivatives against t . The normaliza-
tion can be fixed by requiring

|Bnlm |2
∫ ∞

−∞
d fnlm

∣∣∣∣exp

[
−1

2
a3 ( fnlm ḟnlm − φ̇gnlm fnlm

)]∣∣∣∣
2

= 1. (3.14)
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The expectation of the field perturbations averaged over the
space is given by

〈δ�2(t, x)〉 = 1

2π2

∫
dχdθdϕ sin2 χ sin θ

× 3π

2

∑
nlm

∑
n′l ′m′

〈 fnlm fn′l ′m′ 〉QnlmQn′l ′m′

= 3

4π

∑
nlm

〈 f 2
nlm〉, (3.15)

where

〈 f 2
nlm〉 = |Bnlm |2

∫ ∞

−∞
d fnlm

f 2
nlm

∣∣∣∣exp

[
−1

2
e3α
(
fnlm ḟnlm − φ̇gnlm fnlm

)]∣∣∣∣
2

. (3.16)

Defining the power spectrum, P(n), as

〈δ�2(t, x)〉 =
∑
n

n

n2 − 1
P(n), (3.17)

with l and m summed over, we then find

P(n) = 3(n2 − 1)

4πn

∑
l,m

〈 f 2
nlm〉. (3.18)

Note that if 〈 f 2
nlm〉 depends only on n, the summation over

l and m can be immediately carried out, leaving (assuming
n 	 1)

P(n) 
 3n3

4π
〈 f 2

n 〉. (3.19)

To evaluate the expectation value 〈 f 2
nlm〉, we adopt the

proposal of [28]. We replace ḟnlm by a combination of the
canonical variable fnlm and its c-number value f̃nlm ,

ḟnlm →
˙̃fnlm
f̃nlm

fnlm . (3.20)

When φ̇ or the metric perturbations gnlm are negligible, the
wave function is then

�[ fnlm] = Bnlm exp

(
−a3 ˙̃fnlm

2 f̃nlm
f 2
nlm

)
. (3.21)

The normalization is evaluated as

|Bnlm |2 =
√√√√a3 ˙̃fnlm

π f̃nlm
. (3.22)

The expectation value can then be found to be

〈 f 2
nlm〉 = f̃nlm

2a3 ˙̃fnlm
. (3.23)

4 Effect of mass on the power spectrum

In the Euclidean space, we consider the scale factor solution
(2.27) and a constant scalar field in the background. Neglect-
ing the metric perturbations gn (we suppress the indices l
and m in this section, since the equation of motion does not
depend on them), we calculate the field perturbations fn (we
ignore the tilde that denotes the c-number solution wherever
no confusion arises) by numerically solving the equation of
motion

d2 f̂n
dτ 2 + 3H0 cot(H0τ)

d f̂n
dτ

−
[
m̃2 + (n2 − 1)H2

0

sin2(H0τ)

]
f̂n = 0,

(4.1)

where we use the hat to emphasize that it is the solution in the
Euclidean space. In order to keep Eq. (4.1) finite, we require
that both f̂n(τ ) and f̂ ′

n(τ ) vanish at τ = 0. More precisely,
we adopt the following ansatz as the initial condition for
numerical calculations:

f̂n(τi ) = 1

2
ετ 2

i , (4.2)

f̂ ′
n(τi ) = ετi , (4.3)

where τi � 1 is the initial Euclidean time from which we
start to integrate the differential equations, and ε is an arbi-
trary parameter. Note that since the expectation value 〈 f 2

n 〉
depends only on the ratio f̃n/

˙̃fn , the power spectrum is inde-
pendent of the choice of ε. In our numerical calculation, we
set τi = 10−4 and ε = 1, and evolve the Euclidean system
from τi to τ f = π/2H0.

In the Lorentzian spacetime, we use the analytical solution
(2.30) for the scale factor and a constant scalar field in the
background to model the slow-roll inflation. The equation of
motion for the field perturbation reads

d2 fn
dt2 + 3H0 tanh(H0t)

d fn
dt

+
[
m̃2 + (n2 − 1)H2

0

cosh2(H0t)

]
fn = 0.

(4.4)

The boundary conditions connecting the Euclidean and
Lorentzian solutions are [22–26]

Re{ f (ti )} = Re{ f̂ (τ f )}, (4.5)

Im{ f (ti )} = Im{ f̂ (τ f )}, (4.6)

Re{ f ′(ti )} = −Im{ f̂ ′(τ f )}, (4.7)

123
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Im{ f ′(ti )} = Re{ f̂ ′(τ f )}, (4.8)

where we set ti = 0 to be the initial time of integration in
the Lorentzian space. We then solve the system from ti to the
horizon-exit time,

texit = 1

H0
sinh−1 n, (4.9)

for mode n. Note that for each mode, the expectation value
(3.23), hence the power spectrum (3.18), is evaluated at its
horizon-exit time.

The Hubble parameter in the Lorentzian space is

H(t) = H0 tanh(H0t). (4.10)

Therefore H0 corresponds to the Hubble constant during
the exponentially growing period. To fix the value of H0, we
consider the Hamiltonian constraint in Lorentzian space,

ȧ2

a2 = H2 = 8πσ 2

3
V (�) − 1

a2 + 4π

3
�̇2. (4.11)

For the case that the scalar field is massless, the constant
potential, V (�) = V0, drives the exponential growth of the
scale factor a. The Hubble parameter is approximately

H ≈
√

8πσ 2

3
V0. (4.12)

We choose the normalization of the metric to be

σ 2 = 1

V0
. (4.13)

Therefore, during the exponential growth, H ≈ H0 ≈√
8π/3.
For the case of massive scalar field, during the exponential

expanding period, the Hubble parameter is approximately

H ≈
√

8π

3

(
1 + m2�2

2V0

)
. (4.14)

Note that m̃ = m/
√
V0 with the choice of σ as (4.13).

Figure 1 shows the power spectrum in the massless case
with H0 = √

8π/3. We see that while the power spectrum
is scale-invariant in the small scales, it is enhanced in the
large scales. Figure 2 is the power spectrum for a large mass
m̃ = 1000

√
0.1 with H0 = √

8π/3. Opposed to the massless
case, we see that in this massive case the large-scale spectrum
is suppressed. In Fig. 3 we show the spectra corresponding
to a range of masses, holding H0 = √

8π/3. We can observe
the trend that, as the mass increases, the large-scale spectrum
turns from being enhanced to being suppressed. We find that

1.0 1.5 2.0 2.5

2.495

2.500

2.505

2.510

2.515

2.520

log10n

lo
g 1

0
P
n

Fig. 1 The power spectrum obtained by numerically solving the per-
turbations with m̃ = 0, H0 = √

8π/3

1.0 1.5 2.0 2.5

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

log10n

lo
g 1

0
P
n

Fig. 2 The power spectrum obtained by numerically solving the per-
turbations with m̃ = 1000

√
0.1, H0 = √

8π/3

1.0 1.5 2.0 2.5

2.25

2.30

2.35

2.40

2.45

2.50

log10n

lo
g 1

0
P
n

Fig. 3 The power spectrum obtained by numerically solving the per-
turbations with m̃ = √

0.1 × {0, 1, . . . , 10}, from top to bottom. All
spectra are plotted with H0 = √

8π/3

roughly the power is enhanced when m̃ is greater than 0.5H0,
and suppressed when m̃ is less than 0.5H0.

To find out the mechanism that leads to this transition
from enhancement to suppression as the mass increases, we
first study the time evolution of the power spectrum in the

123
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Fig. 4 The time evolution of power spectrum in the case of m̃ = 0,
H0 = √

8π/3. The darker curves correspond to the spectra at later
times. The lightest curve is the initial Lorentzian spectrum at time ti .
For each n mode, the power is evaluated up to its horizon crossing time

Fig. 5 The time evolution of power spectrum in the case of m̃ = 0.5H0,
H0 = √

8π/3. The darker curves correspond to the spectra at later times.
The lightest curve is the initial Lorentzian spectrum at time ti . For each
n mode, the power is evaluated up to its horizon crossing time

Lorentzian space. The time evolution of spectrum in the
massless case is given in Fig. 4. For massive case, the time
evolution of the spectra for the cases of m̃ = 0.5H0, H0, and
2H0 is given in Figs. 4, 5, 6, 7.

Through the spectrum evolution, we find that the power
enhancement or suppression are reflected in the initial spec-
tra in the Lorentzian space. At the small scales, before the
horizon exit the slopes of the spectra are close to that of the
spectrum of the Bunch–Davis vacuum. At the horizon cross-
ing, the small-scale spectra are nearly scale-invariant. At the
large scales, we see that at the horizon crossing the spec-
tra is enhanced or suppressed determined by the mass of the
scalar field as we showed before. Moreover, we note that even
before the horizon crossing, already in the initial spectra in
the Lorentzian space there are corresponding power enhance-
ment or suppression relative to the small-scale Bunch–Davis
vacuum. The origin of the power enhancement or suppression

Fig. 6 The time evolution of power spectrum in the case of m̃ = H0,
H0 = √

8π/3. The darker curves correspond to the spectra at later
times. The lightest curve is the initial Lorentzian spectrum at time ti .
For each n mode, the power is evaluated up to its horizon crossing time

Fig. 7 The time evolution of power spectrum in the case of m̃ = 2H0,
H0 = √

8π/3. The darker curves correspond to the spectra at later
times. The lightest curve is the initial Lorentzian spectrum at time ti .
For each n mode, the power is evaluated up to its horizon crossing time

therefore lies on the Lorentzian initial condition, or, equiva-
lently, on the Euclidean final spectrum.

To find out the effect of mass on the Euclidean final spec-
trum, we note that the Euclidean equation of motion (4.1)
can also be analytically solved, yielding the solution

f̂n(τ ) = A
Pn

ν [cos(H0τ)]
sin(H0τ)

, (4.15)

where A is an overall coefficient that has no effect on the
final Euclidean spectrum,

ν =
−1 +

√
9 − 4m̃2/H2

0

2
, (4.16)

and we have picked the solution that is consistent with the
no-boundary initial condition. When m̃2/H2

0 > 9/4, ν and
f̂n(τ ) become complex. The power spectrum at the beginning
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of the Lorentzian time can be evaluated using the Euclidean
solution at τ = π/2H0 through the boundary conditions.

When evaluating the ratio f̃n/
˙̃fn with complex f̃n , we inter-

pret it as the amplitude | f̃n/ ˙̃fn|. We then have the initial
power spectrum in the Lorentzian space as

P(n) = 3n3H2
0

8π

∣∣∣∣
Pn

ν (0)

Pn
ν

′(0)

∣∣∣∣ . (4.17)

In the large-mass limit, we can intuitively understand the
power suppression of the initial power spectrum induced
by the mass term in the following way. In such a limit,
the solution to the equation of motion (4.1) roughly con-
sists of an exponentially growing mode, exp(m̃τ), and an
exponentially decaying mode, exp(−m̃τ). Hence, the ampli-

tude | f̃n/ ˙̃fn| is roughly of the order of 1/m̃, which is sup-
pressed by m̃ = m/

√
V0. Note that the large-mass limit

actually lies beyond the linear regime of perturbations, and
the purpose of considering it is only to provide an intuitive
understanding. As shown in Fig. 3, the long-wavelength spec-
trum is already suppressed as m̃2/H2

0 is as small as roughly
0.1

√
6/

√
8π/3 ≈ 0.43. Therefore, it only requires a moder-

ate mass to induce the effect of suppression.

5 Conclusions and discussion

In this paper, we investigated the power spectrum of pertur-
bations due to the no-boundary wave function [18]. We have
relied on very conservative approaches, such as the canonical
quantization [19], Euclidean path integral approach and the
steepest descent approximation [18], use of instantons at the
background as well as perturbation levels [27], and so on,
which are consistent with traditional techniques of quantum
field theory in several regimes [31].

What we can conclude are as follows. First, the infla-
tionary universe is approximately scale-invariant for short-
wavelength scales, while the power spectrum of the pure
de Sitter space is enhanced for the long-wavelength scales.
Therefore, our observation is definitely consistent with the
scale-invariance of the Bunch–Davies vacuum for small
scales, while the only difference is about long-wavelength
modes as expected by the methods of quantum field theory
[29]. Second, the power spectrum can be either enhanced or
suppressed due to the detailed choice of the potential; for
example, the mass term of the inflaton field. One can easily
build a model including the mass term because its origin is
nothing but the mass of the inflaton field. Our approximation
still holds since the mass term maintains linear equations of
motion as already discussed by Halliwell and Hawking [27].
This opens a possibility that the power suppression is indeed
a hint to that our universe starts from an instanton with a

massive inflaton field that approximates the Hartle–Hawking
wave function.

There has been several alternative explanations about the
CMB power suppression [6], but these explanations (e.g.,
phantomness or kinetic energy dominated era) have their
own problems. On the other hand, in our approach, it is nat-
urally consistent with the canonical quantization program
without any ad hoc assumption about the quantum state or
matter contents. In this sense, our explanations are superior
and conservative than the other approaches. It is also worth-
while to mention that, although it is not possible to claim that
the power suppression confirms the Hartle–Hawking wave
function, this work opens a possibility to confirm or falsify a
theory of quantum gravity by investigating its effects through
the experiments and observations. It also shows that the
Euclidean quantum cosmology can expect observational con-
tents with high precisions, against usual expectations (e.g.,
see [32]).

This line of exploration definitely needs more work. It
will be interesting to see more detailed calculations for real-
istic inflationary scenarios. For example, we investigated the
quadratic potential for the inflaton [3] only, but it can be easily
extended to the Starobinsky-type inflation models [4]. Also,
we investigated for compact and homogeneous instantons,
but there are other instantons that also explain the origin of
our universe; e.g., the Coleman–De Luccia instantons [33] or
the Euclidean wormholes [34–37]. One more brave question
is this: what is the relation between the big bounce model of
the loop quantum cosmology [17] and the Hartle–Hawking
wave function [18]? Both approaches explain the power sup-
pression, but it is yet unclear which one is more suitable as
the model of the beginning of our universe. We leave these
interesting issues for future research topics.
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