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Abstract

Natural language processing tasks usu-
ally require to decode the most likely
output sequence which involves search-
ing through all the possible output se-
quences based on their likelihood. Beam
search is a heuristic search algorithm used
in the test-time decoding of sequence-to-
sequence model. While it might have an
advantage over greedy search for accu-
racy, it leads to time and resource hunger
due to keeping and searching through a
fixed amount of beams at each step as
the beam size increases. We aim to ad-
dress this problem and propose methods of
adapting the beam size for decoding with
help of deterministic agent and reinforce-
ment learning, in particular for the decod-
ing phase in Seq2Seq model. In the exper-
iments we show that the proposed adaptive
beam search strategies yield better results
on two NLP tasks compared with baseline
models.

1 Introduction

Since its invention, sequence-to-sequence model
(Seq2Seq) (Sutskever et al., 2014) has been a go-to
model for many translation-related tasks. Despite
its great successes in many domains, how to train
and decode seq2seq model is still an open problem
because of the drawback of traditional maximum
likelihood training which is, most of the cases, un-
able to find the maximum-a-posteriori of a to-be-
decoded single sentence over the whole corpus.

Amongst many heuristic approaches to remedi-
ate that problem, greedy search and beam search
are the most popular. While greedy search is
known for its lightweight, elegant characteristics,
beam search is generally better in practice by con-

sidering not only the best-scored word at each time
step but maintaining a window of best words. In
this paper, we will revisit recent researches on re-
lated topic in Section 2 and address the disad-
vantages of previous Seq2seq model using beam
search and introduce our improvement with atten-
tion in Section 3. Our novel dynamic beam search
algorithms will be discussed in Section 4 and 5.
We also present our experimental results and anal-
ysis in Section 6 and 7 .

2 Related Work

While beam search is considered the de-factor ap-
proach (Sutskever et al., 2014), greedy search, if
designed properly, can yield a comparable per-
formance, if not better in some cases, while hav-
ing a much more lightweight architecture. Goyal
et al. (2017a) proposed an approximated version of
greedy search over the scheduled sampling train-
ing procedure (Bengio et al., 2015). Unlike tack-
ling with decoding phase solely, another useful
approach to improve seq2seq is to design a bet-
ter architecture or technique of helping decode
right on the training phase. One widely-employed
approach is to convert it into an imitation learn-
ing problem (Daumé et al., 2009; Ross et al.,
2011; Bengio et al., 2015) where expert guid-
ance from human is injected to make the agent
more robust and efficient. A naturally connected
method is to use reinforcement learning (Sutton
and Barto, 1998) which employs a reward-based
loss instead of maximum likelihood-based (Ran-
zato et al., 2015; Gu et al., 2017c), giving rise to
a new family of techniques which is fitted to the
discrete text domain.

While discriminative training is the straightfor-
ward method for seq2seq training, another gener-
alized method is to pose it as a generative model.
Amongst such solutions, Generative Adversarial



Network (Goodfellow et al., 2014) broadly used
for diverse tasks, predominantly in generating im-
ages (Radford et al., 2015; Berthelot et al., 2017;
Zhang et al., 2017; Karras et al., 2017; Li et al.,
2017) and videos (Vondrick et al., 2016) based on
what model learned from training, or translating
them given a style of images (Mirza and Osindero,
2014; Isola et al., 2017; Kim et al., 2017; Mechrez
et al., 2017; Luan et al., 2017; Zhu et al., 2017;
Ma et al., 2018) and videos (Ruder et al., 2016;
Liu et al., 2017). Despite the booming trend of
GAN, its application to text domain faces a diffi-
cult obstacle of inherent discrete properties of text
domain. Nonetheless, there have been successes
of translating text from a style to another to deal
with discrete texts (Hjelm et al., 2017; Yu et al.,
2017; Shen et al., 2017).

Inspired by GAN’s design, similar approaches
have been made to seq2seq in conjunction with
reinforcement learning (Kusner and Hernández-
Lobato, 2016; Yu et al., 2017; Gu et al., 2017a,b).
And although not directly connected, actor-critic
setting which shares a close equivalence with
GAN (Pfau and Vinyals, 2016), has been also
employed to replace maximum-likelihood method
(Bahdanau et al., 2017). And while sharing the
same methodology in that we improve the decod-
ing performance by making the model learn to de-
code right on the training phase, our approach still
sticks to maximum likelihood method objective.

While reinforcement learning can yield a fast
decoding model, training with maximum likeli-
hood has its own merit of being simple yet compa-
rably efficient. For such approach, some attempts
to make the model learn how to decode right on
the training phase have also taken place. There
were some solutions that optimize beam search in
discrete space such as from Wiseman and Rush
(2016); Andor et al. (2016) whose target is to get
rid of label bias problem and design a model that is
globally–rather than locally–normalized. Another
work, from which our work extends, instead aims
at design a new surrogate training objective to con-
vert from discrete space into a continuous approx-
imation of the beam search (Goyal et al., 2018).
In detail, because using beam search right at train-
ing phase largely degrades the performance due to
its resources consumption and its search space, we
plan to use a tactic of dynamic beam search (Buck-
man et al., 2016) to make the training faster while
retaining its efficacy.

3 Seq2Seq Tagging Model

Seq2Seq (Sutskever et al., 2014) has been a well-
known model for machine translation and the re-
lated style-transfer tasks that involve text process-
ing, which naturally requires a sequential model.
Unlike those common tasks that employ Seq2Seq
to predict variable-length inputs and outputs, we
tackle with the Name Entity Recognition (NER)
and CCG Supertagging tasks in which the input
and output are of the same length, i.e. input se-
quence X = {x1, x2, ..., xT } and output sequence
Y = {y1, y2, ..., yT }. This natural basis leads to
a little difference in our Seq2Seq formulation, as
well as how to perform attention effectively. We
will discuss the new encoder and decoder in our
Seq2seq model (Figure 1).

3.1 Seq2Seq Encoder

The encoder introduces latent variable Z which is
intermediate connection between X and Y , and
models the probability P (Z|X) where

P (Y |X) =
∑

P (Z|X)P (Y |Z,X). (1)

But there is an inherent problem specific to text
domain is that the dimensionality of X is too
high to model efficiently. A popular solution is
to learn an non-linear word embedding space EX

that shares the similarity of word relation with X
but in much smaller dimension. Word embed-
ding is the vector representation of a word and
served as the input of encoder. In order to capture
the syntactic and semantic relations among words,
pre-trained word embeddings are used. For En-
glish datasets, we researched two widely used pre-
trained word embeddings - Word2Vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014).
For German datasets, we tried fastText (Joulin
et al., 2016) and the other version provided by
(Goyal et al., 2017b).

As usual for text sequence, the encoder employs
an RNN, which model output at each time step as:

(henct , cenct ) = RNN(henct−1, xt) (2)

where hi and ci denotes the hidden and cell state at
time step t respectively. Thus the encoder output
Z is the last hidden state hT and cell state cT as:

Z = (hencT , cencT ) = RNN(hencT−1, x
enc
T ) (3)



Figure 1: Architecture of Seq2Seq model with
fixed attention. The special token that denotes a
beginning of a sentence is denoted as <s>. At
each time step, the output hdect only looks back
the corresponding input of the same time step henct

(denoted as ot in this figure).

3.2 Seq2Seq Decoder
As mentioned, the decoder will take encoder’s out-
put Z, and try to decode each token ỹt correspond-
ing to xt. It models the conditional probability:

P (Y |Z,X) =

T∏
t=1

p(Yt|Z, Y1, ..., Yt−1) (4)

with a note that Y0 is the special token that denotes
the start of a sentence.

The Seq2Seq training target is to find the best
translation sequence which is as close to the
ground truth Y as possible, or formally:

Ŷ = argmax
Y

p(Y |Z,X) (5)

This is the phase where we employ the searching
algorithm such as greedy search or beam search
to decode each token. But essentially, the whole
process consists of two phases. First is the RNN
phase which is similar to the encoder:

(hdect , cdect ) = RNN(hdect−1, yt) (6)

where the initial hidden and cell state is set from
the encoder by Equation 3.

Similar to the encoder, the golden label se-
quence Y is also first casted into an embedding
EY , and then fed into the decoding RNN network.
Note that, slightly different from the encoder, here
it is yt−1 that is fed into the RNN cell at step t
(hence the last label yT is not fed; the input se-
quence is {y0, y1, . . . , yT−1}). For the initial input
at step t = 1, we use a special token y∗ = <BEG>
to denote the beginning of the label sequence.

The second phase is to convert the hidden state
of tokens to the probability over the entire label

space:

pyt = softmax(Wsh
dec
t + bs) (7)

where Ws and bs are the shared weight and bias
vector on top of the decoder’s hidden layer.

3.3 Fixed Attention
Attention model (Bahdanau et al., 2014; Luong
et al., 2015) is one of the useful tricks in train-
ing Seq2Seq models. The idea is, instead of using
the RNN function as in Equation 6 in which every
output only depends on current input token and the
previous hidden state, we augment this by giving it
a chance to look back and calculate the similarity
with each token in the encoder output sequence.
The similarity functions are varied in practice.

Then the Equation 7 for decoder output at step
t is transformed to:

pyt = softmax(Ws · attn(hdect , henc) + bs) (8)

where the attention function is the re-weighted
output w.r.t the encoder output:

attn(hdect , henc) =
T∑
i=1

henci ∗ ai (9)

and the activated weight function a() is the soft-
max of similarity:

a = softmax(sim1, sim2, . . . , simT ) (10)

where the similarity function

simi = fsim(hdect , henci ) (11)

can be a as simple as a dot product simi = hdect ·
hencTi (Luong et al., 2015) or a linear combination
between them (Bahdanau et al., 2014), as follow:

simi = (hdect ·W dec + henci ·W enc) · V (12)

In our Tagging problems, we have a valuable
prior that at every time step t: the output hdect is
absolutely similar to henct , i.e. they have the same
time step. Consequently, equation 10 will give the
probability 1.0 to simt and zero to the rest, leading
to the change of equation 9 into a simple form:

attn(hdect , henc) = henct (13)

For implementation, we keep this ”fixed” set-
ting with Bahdanau attention, and so we only



need to learn the parameters W dec,W enc, V be-
fore passing the decoder output into softmax in 8
for decoding. Figure 1 illustrates our attention set-
ting. And as a trick, we can concatenate hdect and
henc so that we only need learn only one matrixW
whose output dimension is the concatenated hid-
den sizes of both the encoder and decoder com-
bined.

3.4 Seq2Seq Training
Finally, to train the model, we use the canonical
cross-entropy loss:

L = −log(P (Y |X)) = −
T∑
t=2

log(pyt) (14)

In detail, the traditional training which uses the
teacher-forcing algorithm will feed the correct la-
bel yt to each time step t. But this oftentimes leads
to an unwanted behavior where an error in will
propagate severely at test time, when the model
has no idea about the gold labels. By using this
training scheme, the model is not able to learn
about how to handle a wrong prediction properly.

One popular method is to employ a schedule
where teacher-forcing is used at a random chance
at each step, and the other chance is to feed the
predicted ỹt instead of the gold label yt and let the
model learn to penalize and correct wrong predic-
tions appropriately.

3.5 Test-time decoding
In test time, as in training time, the decoder re-
ceives the last hidden and cell states from the en-
coder as initial states. The initial input at step
t = 1 is also the universal special token y∗ =
<BEG> or <s>. But, different from training time,
the inputs at time steps t = 2, . . . , T−1 depend on
the predicted label at the previous step. Roughly
speaking, we would replace the input yt−1 by
ŷt−1 at test time. The exact way to do so is de-
termined by the decoding algorithm.

3.5.1 Greedy Search
Greedy decoding at test time is to greedily pick
the best prediction (with the highest probability)
at each time step as the only selection criterion.

Formally, at step t = 1, we compute py1 us-
ing (7), and pick the token ŷ1 that has the highest
probability p1 = max(py1) as our predicted label.

Next, we keep an accumulated probability Pt

initialized as P1 = p1. At step t = 2, 3, . . . , Ty,

after computing pt, we first compute the accumu-
lated probability Pt = pt ∗ Pt−1 =

∏t−1
i=1 pi, and

then pick the label ŷt which has the highest prob-
ability Pt as our predicted label at step t.

In practice, we consider log(Pt) instead of Pt to
prevent the common numeric underflow issue.

3.5.2 Hard Beam Search
Extended from greedy search, hard beam search,
although more architecturally and hence computa-
tionally expensive, is more widely, and tradition-
ally used (Sutskever et al., 2014) for it is able to
prevent the label bias problem in Seq2Seq mod-
els. It is also known as TopK searching algorithm
because at every step, instead of considering the
maximum value, it always maintains a window of
size K for the best K options. For this reason,
greedy search is just its special case whereK = 1.

For example, at step t = 1, instead of pick-
ing the only ŷ1, we keep the K best labels
{ŷ(1)1 , ŷ

(1)
2 , . . . , ŷ

(1)
K }. Note that we need a track-

ing table mapping the words in vocabulary to those
labels. Similar to greedy search, we keep the accu-
mulated probabilities {P1, P2, ..., PK}, which are
initialized as {p(y(1)1 ), p(y

(1)
2 ), . . . , p(y

(1)
K )}. We

start to build a tree with K branches.
In detail, later at time step t, we have K

options of inputs {y(t)k }
k=1
K , and for each in-

put y(t−1)k , we also calculate K best probabilities
{p(y(t)k1 ), p(y

(t)
k2 ), . . . , p(y

(t)
kK)}. Note that this time

step, we still only keepK branches in total, i.e. we
keep only the best global cases across all beams
(also based on the accumulated log probabilities)
along with recording the mapped label associated
with that probability. Finally, the highest accu-
mulated sum-log will be chosen and the predicted
label sequence is pulled out by backtracking the
mapping table.

Compared with greedy search, hard beam
search with fixed beam size trades processing time
with the accuracy since best scoring sequence will
eventually be captured as the beam size grows.
However, it always process B ∗ |Vlabel| tokens
where B is beam size at each time step, which
consumes not only a a large amount of time but
memory as well.

4 Adaptive Beam Search by Heuristic
Pruning and Growing

To increase the search efficiency as well as the
optimality of the resulting sequence, we propose



the heuristic rules to prune or grow the beam size
of the search tree space during the test-time de-
coding. The intuition behind the design is that,
if we predict that some branches are much more
probable than the rest of the branches, it might
be reasonable to skip searching through the less
probable branches. Furthermore, unlike fixing the
beam size, we should also include as many beams
as possible if they are comparably probable candi-
dates at each time step.

In this work, we adopt the novel approach that
we only incrementally increase or decrease the
beam size during the search process. Such design
choice facilitates the comparison between the per-
formance of the heuristic rules and the reinforce-
ment learning agent we will be discussing later in
Section 5.

In detail, consider that at time step t of the
decoding, there are Bt−1 inputs, ŷ

(b)
t−1, b =

1, . . . , Bt−1, from the Bt−1 previous step of the
decoder output. By decoding these Bt−1 inputs,
we obtain Bt−1 × |V y| probability predictions for
the |V y| possible targets in Bt−1 beams. We sort
the Bt−1 × |V y| probabilities into a sorted de-
scending list {P1, . . . , PBt−1|V y |}, with P1 being
the highest probability. We then pick the top Bt

elements from the sorted list to form the new beam
produced by this decoding step, with the corre-
sponding target words {ŷ(1)t , . . . , ŷ

(Bt)
t }. In the

standard beam search where the beam size is kept
fixed, we have Bt = Bt−1 at each step. Then in
our proposed adaptive beam search approach, we
have the following two deterministic rules to dy-
namically change the beam size to new Bt at each
time step t.

• If
∏′

t PBt−1∏′
t P1

≤ rsen
low or

PBt−1

P1
≤ rword

low , then

decrease the beam size: Bt = Bt−1 − 1.

• If
∏′

t PBt−1∏′
t P1

> rsen
low or

PBt−1

P1
> rword

low , then

increase the beam size: Bt = Bt−1 + 1.

The primed summation
∏′

t notation is used to in-
dicate that the product is taken over the path of
this beam from t = 1 to this step. For example,∏′

t P1 denotes the cumulative probability for the
sequence of the top-1 beam. The thresholds rsen

low
and rword

low are chosen heuristically. In our experi-
ments, we set rsen

low = 0.1 and rword
low = 0.1. Note

that to avoid numerical underflow issue, we work

in the logarithmic space as we implement the rules
just like in the hard beam search.

5 Adaptive Beam Search by
Reinforcement Learning

Using the heuristic rules to prune or grow the
beam size has a downside that the thresholds of
pruning or growing (the parameters rsen

low and rword
low

in our case) are set by hand, which may require
some tuning process to find the most suitable val-
ues. Moreover, the thresholds suitable for one task
is generally different from those for another task.
Thus, additional human labor is needed to identify
the suitable thresholds for each new task.

To overcome the shortcomings of the heuris-
tic algorithm above, we propose the second ap-
proach to perform the adaptive beam search by in-
troducing an agent to learn when to increase or
decrease the beam size, with the help of reinforce-
ment learning.

5.1 Reinforcement learning environment

To apply reinforcement learning in the problems
using seq2seq model, we need to first define the
environment. In particular, we consider the sce-
nario that there is an agent observing the predicted
probability distribution at each step t of the de-
coder output, and determines what action to take
to adjust the beam size.

The state of our environment consists of the fol-
lowing information:

• Log probabilities of the sequences in the cur-
rent beams, which are the cumulative log
probabilities along the paths defining the se-
quences.

• Log probabilities of the labels in the current
beam predicted at the current step; that is,
the incremental contribution to the cumula-
tive probabilities of the sequences.

• Current beam size.

The action of the agent is among the three possi-
ble options: increasing, decreasing, or keeping the
same beam size. We design the environment in
such a way so that the task of the agent is greatly
simplified; instead of making decisions within all
the possible beam sizes, we limit the action space
of the agent down to 3. This can make the rein-
forcement learning more likely to be successful.



Figure 2: Demonstration of how agent learns to
adapt beam size for decoding. At t = 1, it learns
to increase the beam size from 3 to 4. At t = 2,
it reduces the beam size back to 3. The agent will
choose whether to decrease (-1), keep or increase
(+1) the beam size.

The reward is designed to dictate the learning
goal of the agent. We define the learning goal of
the agent to be consisting of two objectives:

1. To increase the F-score or accuracy, the mea-
sure of the task.

2. To decrease the beam size whenever possible
to increase the search efficiency.

With these learning goals in mind, we design our
reward function to be a linear combination of two
terms: The incremental F-score or accuracy, and
the amount of decrease of the beam size. That is,

rt = α(scoret − scoret−1)− β(Bt −Bt−1),
(15)

where Bt is the beam size at step t. In our experi-
ments, we set α = 1 and β = 0.02.

Finally, the main interface which interacts di-
rectly with the agent is the step() function,
which takes an input of an action and current state
and then return the resulting immediate reward for
the being timestep. In our environment, each step
would be to determine the tag for a specific word
in a sentence. So at timestep t, we receive the cur-
rent state which includes the most updated beam
state, and perform a decoding step which returns
the decoded (predicted) tag and the corresponding
reward. To facilitate implementation speed, we
perform the whole episode at once and populate
all relevant states, rewards and actions before re-
turning to the agent to update, which only needs to
take place at the end of each episode.

5.2 Training Decoder with Asynchronous
Advantage Actor-Critic Method

Figure 3: A3C training with multiple training
agents which are all able to update the parameters
to the shared model. For validation and testing,
these parameters are copied to the respective vali-
dation and test agents.

Actor-Critic RL (Sutton and Barto, 1998) is
known to be a popular method to effectively train-
ing a RL agent using REINFORCE (Williams,
1992) because it allows to end the episode early.
But we choose Asynchronous Advantage Actor-
Critic (A3C) (Mnih et al., 2016) to implement
our algorithm for simplicity (compared with other
state-of-the-art methods), ability to resolve high
variance and high sample complexity in training
of Actor-Critic and parallelism which helps speed
up the training.

Our A3C architecture is shown in Figure 3.
From the environment defined above, we use a
shared model and initialize many training agents
which share the same optimizer as well, to asyn-
chronously update the model policy network dur-
ing training. Each episode stands for each sen-
tence containing the tagging task for each token in
the sentence.

Formally, we have a main actor which aims to
learn the policy function π(at|st; θ) where θ is the
parameter of this policy deep network. We often-
times approximate this function by a deep neu-
ral network where an input is the state, which in
our case is a flattened vector of length l and out-
puts a logits vector of size 3 (action space). To
reduce the variance and high sample complexity,
we have a critic agent which acts like an adaptive
baseline network, which co-progress with the ac-
tor to push its accuracy in choosing more precise
actions. The critic network leans a value function
V (st; θv), which outputs a single scalar.

The reward for each time step is traditionally
calculated as the cumulative discounted rewards,



with the last term is the value of critic network at
that time:

Rt =
T−1∑
i=0

γir(st+i, at+i) + γTV (st+T ; θv)

where T is the episode length, which is the sen-
tence’s length being considered and t is the current
timestep. Here the sentence is always limited, so
we don’t have to bound the episode length as in
such cases as game playing.

The advantage at each time step is the differ-
ence between the discounted reward and the critic
value:

A(st, at) = Rt − V (st; θv)

The policy (actor) loss will be:

Lactor =

N∑
i=1

T∑
t=0

log π(at|st; θ) · γt·

A(st, at) + β H(π (st; θ))

(16)

where H is the entropy of a state with the coef-
ficient β. The critic network has its separate loss
which is:

Lcritic =
N∑
i=1

T∑
t=0

(Rt − V (st; θv))
2 (17)

In terms of implementation, both parameter sets
of actor and critic are updated using Adam op-
timizer after each episode. As noted above, this
optimizer is shared between many training agents,
each agent has both actor and critic in it. We also
clip gradient L2 norm aggressively at the value of
5.0 to make the training more stable.

6 Experiments

Our implementation1 is built based on PyTorch
(Paszke et al., 2017). We conducted all experi-
ments on AWS EC2 as well as private comput-
ers. As it is discussed in Section 3, the current
Seq2Seq model is built on the encoder-decoder
architecture. For encoder, we use one-layer bi-
directional LSTM, and for the decoder we use one-
layer single-directional LSTM with a fixed atten-
tion mechanism. We perform the training using
mini-batch stochastic gradient descent with Adam
optimizer and use different beam search strategies
in testing time. The task we are trying to solve
is two common natural language processing tasks,
the named entity recognition (NER) and CCG Su-
pertagging.

1The Github repository is accessible at:
https://github.com/ShuxinLin/nn4nlp project/.

6.1 Datasets

In order to make our experimental results compa-
rable to the baseline (Goyal et al., 2017b), we use
the same datasets as well as evaluation metrics.

For named entity recognition, we use the data of
CONLL-2003 shared task (Tjong Kim Sang and
De Meulder, 2003) for German language. The
data consists of three files per language: one train-
ing file and two test files, testa and testb. We
use testa as the development data, testb as the fi-
nal test data. The label/entity has 9 possible val-
ues: 8 NER tags and a tag denoting the end of the
sentence (EOS). Due to the extremely skewed la-
bel distribution towards the default label (O), the
widely-used evaluation metrics is F score.

For CCG Supertagging task, we use the data
of CCGbank corpus (Hockenmaier and Steedman,
2007). The label has 1321 possible values: 1320
CCG derivation grammar tags and a tag denoting
the end of the sentence (EOS). In this task, accu-
racy of correct predictions is measured.

We perform very minor preprocessing on the
data by creating and indexing the vocabulary of
each datasets. Given the vocabulary of input
words, we construct pre-trained word embedding
matrix using GloVe for English and provided word
embedding (Goyal et al., 2017b) for German. As
can be noticed above, CCG Supertagging have
larger label size (search space) than NER task. It
leads to the fact that CCG supertagging task is
more appropriate for measuring the efficacy of the
proposed dynamic beam search methods.

6.2 Results and Analysis

6.2.1 Heuristic Pruning and Growing Results
The results of the heuristic pruning and grow-
ing adaptive beam search on the NER and CCG
datasets are shown in Table 1 and 2, respectively.
From the results of NER dataset, we observe that
using heuristic adaptive beam search effectively
reduces the search space and the search time,
while not sacrificing the F-score. In the case of
initial beam size 9, the total number of beams ex-
plored during decoding in the adaptive case is only
42% of that in the case of fixed beam size, while
the F-score using adaptive search only decreases
by less than 0.1%; measured in time, the decod-
ing time is reduced to 52% when using adaptive
method. Note that in the NER dataset, greedy
search gives higher F-score than the beam search
methods do. This is consistent with the results



from the baseline. The performance of the adap-
tive search is better on the CCG dataset. We ob-
serve the following:

1. By starting with initial beam size of 1, and al-
low the beam size to be adaptively changed in
the following steps during decoding, we ob-
tain higher accuracy than the greedy search
(always keep beam size 1) does.

2. Using fixed beam size, one needs to use beam
size 3 to obtain the same accuracy achieved
by the adaptive beam search with initial beam
size 1, while the latter only needs to explore
about 59% of the beam number, and spends
only 47% of the time.

3. The F-scores obtained by using different ini-
tial beam size for the adaptive search are sta-
ble (actually the same value in this exper-
iment), and the total number of beams ex-
plored by using initial beam size 3 increases
by only 11% compared to that by using initial
beam size 1.

6.2.2 A3C Results
The results of the adaptive beam search using the
RL agent on the NER and CCG datasets are shown
in Tables 3 and 4. For the NER dataset, we observe
that the reinforcement learning agent in general
obtains lower F-score than that obtained by using
greedy, fixed, or heuristic adaptive beam search.
We find that the agent tends to learn to decrease
the beam size more aggressively than the heuris-
tic rules do. One possible reason for this behav-
ior is that in the NER dataset the learning signals
coming from the F-score are sparse, since most
of the NER tags are “O” and do not contribute to
the F-score. Therefore, the learning signals com-
ing from decreasing the beam size dominates the
learning process, and the agent does not learn to
adjust the beam size to obtain higher F-score ef-
fectively.

In the CCG dataset, we observe the following:

1. In general the agent is able to learn to dynam-
ically adjust the beam size to obtain the accu-
racy that is higher than that using the greedy
search. In the worst case (initial beam size
2), the accuracy is the same as using greedy
search. Nevertheless, the accuracy obtained
by the agent is still lower than that obtained
using the heuristic adaptive beam search.

2. Unlike in the case of NER dataset, the agent
here is able to learn to increase the beam size
to raise the accuracy. We observe that as the
total number of beams explored increases, the
accuracy obtained by the agent increases as
well. In the worst case (initial beam size 2),
the agent does not learn to increase the beam
size to get higher accuracy effectively, and
the total number of beam size stays at the
similar level of that of the greedy search. In
that case, it obtains the same accuracy as that
obtained by the greedy search as well.

The possible reason for the more effective
learning with the CCG dataset is that the
learning signals coming from improving the
accuracy is dense in this case. Unlike in the
case of NER dataset, every label counts for
the accuracy in CCG dataset, therefore the
agent constantly obtains incremental reward
at every step of decoding, and learns a better
correlation between their choice of adjusting
beam size and its impact on the accuracy.

3. Larger beam size does not always lead to
higher accuracy. Although this phenomenon
can also be observed by comparing the
greedy search and the beam search, here the
situation is more subtle. For example, both
starting with initial beam size 3, the fixed-
size beam search uses more total beams and
obtains higher accuracy than the agent does,
while the heuristic beam search uses fewer
total beams to also obtain the higher accu-
racy. This indicates that, in addition to the
total number of beams explored, the quality
of the decision of when to change the beam
size indeed matters. In our case, the agent
has not learned the decisions as good as the
heuristic ones.

4. The learning of the agent is not stable. The
experiment of training the agent with initial
beam size 2 is not successful and is signifi-
cantly worse than the other two cases.

Generally speaking, the RL cannot beat the
heuristic methods in terms of quantitative per-
formance (F score or accuracy) and overall run-
time since reinforcement learning introduces agent
training. The break point here is whether the adap-
tive beam search is used to solve multiple NLP
tasks. If that is not the case, then heuristic method
might be a better choice.



Table 1: Results on Named Entity Recognition task using heuristic pruning and growing rules. The
F scores and other experimental results of greedy search, hard beam search (beam size = 3, 6, 9) and
heuristic adaptive beam search (beam size is initialized as 3, 6, 9) are listed. The last row is the baseline.

Greedy Beam 3 Beam 3 Beam 6 Beam 6 Beam 9 Beam 9 Soft Beam
Fixed Adaptive Fixed Adaptive Fixed Adaptive

F-score 58.09 57.69 57.71 57.76 57.71 57.76 57.71
Total tokens # 48,571 145,713 92,727 291,426 126,759 437,139 182,785
Avg. beam # 1 3 1.95 6 3.16 9 4.86
Time (sec) 22 76 61 132 73 178 92

(Goyal) F score 54.92 51.34 56.38

Table 2: Results on CCG Supertagging task using heuristic pruning and growing rules. The F scores and
other experimental results of greedy search, hard beam search (beam size = 2, 3) and heuristic adaptive
beam search (beam size is initialized as 1, 2, 3) are listed.

Greedy Beam 1 Beam 2 Beam 2 Beam 3 Beam 3 Soft Beam
Adaptive Fixed Adaptive Fixed Adaptive

Accuracy 90.50 90.62 90.60 90.62 90.62 90.62
Total tokens # 52,964 93,403 105,928 98,100 158,892 103,875
Avg. beam # 1 1.61 2 1.72 3 1.87
Time (sec) 22 87 92 130 184 141

(Goyal) Accuracy 80.35 82.42 82.00

Table 3: Results on Named Entity Recognition us-
ing adaptive beam search by reinforcement learn-
ing. The beam size is initialized as 3, 6, 9.

Beam 3 Beam 6 Beam 9

F-score 57.66 57.61 57.52
Total tokens # 65,619 105,076 155,466
Avg. beam # 1.17 2.00 3.06

Table 4: Results on CCG SuperTagging using
adaptive beam search by reinforcement learning.
The beam size is initialized as 1, 2, 3.

Beam 1 Beam 2 Beam 3

Accuracy 90.56 90.50 90.59
Total tokens # 100,573 55,372 151,832
Avg. beam # 1.80 0.99 2.73

7 Conclusion

In this paper, we propose a novel strategy for
optimizing the beam search for Seq2Seq model.
We implement two adaptive beam search meth-
ods - heuristic rules and reinforcement learning -
for reducing search space and runtime by chang-
ing beam size dynamically in the decoding phase.
We have conducted experiments on the NER and
CCG Supertagging tasks using our models. Re-
sults demonstrate that our method is able to speed
up the decoder without losing any quality. All the
code is now made available in our Github reposi-
tory.
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