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Abstract

In zero-shot learning tasks, how to classify the data in the unseen classes in
one domain by leveraging the information from the semantic domain is a main
challenge. We propose a novel model, the semantic adversarial autoencoder, to
address this challenge. By injecting the global information of the distribution of
the semantic representation, the model acquires better generalization ability. We
perform experiments on the AwA and CUB datasets, and show that our model
outperforms the semantic autoencoder in the generalized zero-shot learning tasks.

1 Introduction

Zero-shot learning (ZSL) has been an active research topic in the field of image classification. It
simulates how people learn things: when people see an unfamiliar object, they use existing knowledge
and try to evaluate the new object. Ideally, a large-scale image classification system should be able to
recognize novel categories based on its previous training experience. One of the main challenges
for object recognition is the lack of sufficient annotations for all possible concepts. This problem
becomes even more severe when we target at the task of fine-grained classification because the
annotation is more expensive and the number of fine-grained classes is huge. Realizing this limitation,
researchers resort to additional information, for example, textual or attributive description, to solve
this problem.

On the other hand, autoencoder has shown its great express power to present complicate distributions
such human faces, natural sceneries, and natural language. It is able to convert complicated real
world data distributions, e.g. text features, to very well-formed low dimension. Many studies have
shown that after applying autoencoder techniques, the learned latent feature space often has clear
semantic meanings. For example, in [13], all the digits can be well embedded into a low-dimensional
manifold such that similar digits will have smaller distance within that manifold.

The fundamental problem of ZSL is to extract semantically meaningful feature embeddings that could
bridge the gap between similar image/text features and fine-grained classes. Autoencoder becomes
an ideal option for this task because it can automatically learn representative features. In [8], the
authors present a novel solution to zero-shot learning, the Semantic Autoencoder (SAE). Taking the
encoder-decoder paradigm, an encoder aims to project a visual feature vector into the semantic space
as in the existing zero-learning shot models, and the decoder should be able to reconstruct the original
visual feature. Their results show that under this framework, the learned projection function from the
seen classes is able to generalize better to the new unseen classes. One shortcoming of this model is
that the encoder tends to learn similar features across multiple classes, which is disappointing for the
task of fine-grained classification.
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Inspired by these models, we propose the model of semantic adversarial autoencoder (SAAE)1. In this
model, we have an encoder that projects a visual feature vector into the semantic space and a decoder
that decodes and reconstructs the original visual features. Besides, we incorporates a discriminator as
in [13] to ensure that generating from any part of prior space results in meaningful samples. Two
types of models that use different priors are investigated. In one type of the model, the prior is the
Gaussian noise prior, and in the other type the semantic representation itself is used as the prior.

2 Related Works

Considering that fine-grained categories might share some common knowledge, a common approach
is to seek for an intermediate semantic representation that could connect seen and unseen classes.
Human specified attributes are first explored to represent the discriminative properties shared among
both seen and unseen categories in zero-shot learning [15, 9]. One limitation of this method is that
the creation of attributes still relies on human labors, making it difficult to scale up to meet large scale
needs.

Apart from handcrafting attributes, another scheme is to directly use the online textual document
as the additional information source. [3] is one of the first works to use Wiki documents as text
attributes. [11] proposed a model that changes both the ways of extracting features from images
and text domains. More specifically, the image features are extracted from the activation layer of
a convolutional neural network (CNN), and then go through a linear projection layer to reduce
dimensions. The input text, e.g. Wikipedia articles, is first converted to one-hot encodings of the
words with their tf-idf scores, which can be viewed as attributes, and then fed into a multi-layer
perceptron (MLP) to generate a deep representation, with the same dimension as the final image
feature, and unique for each class. The final prediction is obtained by the dot product of the two
generated features. Instead of learning an embedding space for each modalities, [4] learns joint
image-word embeddings so as to embedding images and sentences into a common space.

Another line of research is to improve the quality of the classification procedure. [6] firstly proposed
a SVM based classifier which takes the linear projection of both source and target domain data
as the combined input. More recent works jointly project the class into an embedding space, and
try to compute a compatability function F (x, y) that tries to predict whether the image feature x
is compatible with the embedded class feature y. Here each class is represented as a vector that
contains the relevance scores of the class and a set of predefined attributes. In [1], F (x, y) takes a
linear form as F (x, y) = xWy. [17] takes this idea one step further, where a set of Wi is available
for the the compatibility function F (x, y), and the final prediction will choose the W that can
produce the highest score. This Wi can be shared across different labels. The method is called as
latent embedding, since it learns a latent embedding space explicitly based on clustering. [19] pro-
poses a framework that generalizes deep learning embedding, label embedding, and latent embedding.

Recently deep encoder-decoder has become popular for a variety of multi-modal problems. In
[7], they introduce an encoder-decoder pipeline that learns a multimodal joint embedding space
with images and text and a novel language model for decoding distributed representations of
the text semantic space. Their pipeline effectively unifies joint image-text embedding models
with multimodal neural language models. [8] takes a step further in multimodal model under the
autoencoder paradigm. They proposed a novel zero-shot learning model based on a semantic
autoencoder that uses a fast linear projection function and introduce an additional reconstruction
objective function for learning a more generalisable projection function.

3 Semantic Adversarial Autoencoder

3.1 Semantic Autoencoder

For transfer learning tasks, the semantic autoencoder (SAE) [8] is a tailor-made type of antoencoder-
like structure that learns the transfer function between two domains. We consider the case in which one

1The code is available on https://github.com/yuhsianglin/10707DL_proj.
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domain is the image feature x, and the other domain is the attribute t (the “semantic representation”)
that describes the corresponding image. An autoencoder is trained to learn the transfer function W
through the optimization problem,

min
W
||x−W>Wx||22, s.t. Wx = t. (1)

This model enforces the encoding of the image to be identical with the corresponding semantic
representation. While this is a difficult constrained optimization problem, in the SAE architecture,
the loss is relaxed to

LSAE = ||x−W>s||22 + λ||Wx− s||22, (2)

where a coefficient λ is introduced to adjust the relative importance of the two terms. The SAE loss
is a convex function, and in this form W can be solved efficiently via the Bartels-Stewart algorithm
[12], which is adopted in [8].

Note that the SAE is more like a domain transfer machine, rather than a standard autoencoder: It is
not minimizing the reconstruction loss; it is minimizing the two directions of transfers between the
two domains. Later in our experiments we find that in practice the learning may be majorly driven by
one of the two directions (see section 6.3).

3.2 Adversarial Autoencoder

In the adversarial autoencoder [13], a generative adversarial net (GAN) [5] is incorporated into the
autoencoder, and the prior in the GAN is chosen to regularize the hidden representation generated by
the encoder. The positive samples z are drawn from the prior r(z), while the generator G, which
is simply the encoder in this architecture, generates negative samples G(x) by encoding the input
x, which is drawn from the underlying data distribution pd(x). During training, the discriminator
D is trained to tell the positive samples from the negative samples, and the generator is trained to
generate samples that has the aggregated distribution mimicking the prior distribution, so as to fool
the discriminator. This procedure can be described as the optimization problem,

min
G

max
D

Ez∼r(z)[logD(z)] + Ex∼pd(x)[log(1−D(G(x))) + Lrecon], (3)

where Lrecon is the reconstruction loss of the autoencoder. Through this procedure, the model learns
to generate the encodings whose distribution is close to that of the prior by jointly minimizing the
reconstruction loss from the autoencoder, the loss of misclassifying the positive and negative samples
from the discriminator, and the loss of failing to generate positive samples from the generator.

3.3 Semantic Adversarial Autoencoder

We propose the semantic adversarial autoencoder (SAAE) of which the generator learns to transfer
the representation in one domain into that in another domain. The SAAE differs from the plain
adversarial autoencoder in that it needs to encourage the input in one domain to be encoded into the
representation in another domain (it learns a specific semantic). It also differs from SAE in that it
uses the adversarial net to inject the global information of the distribution of the training data into the
process of locally learning the encoding of each mini-batch of instances.

We perform experiments on two architectures: the SAAE with explicit matching (SAAE-exp) and the
SAAE with implicit matching (SAAE-imp). Their architectures are shown in Figure 1. In SAAE-exp,
we explicitly require the encoding to approximate the semantic representation, and the positive
samples is drawn from the Gaussian prior. In this case, the prior serves as a regularizer. In SAAE-imp,
we directly use the semantic representation as the positive samples drawn from some underlying
distribution that describes the semantic representation, and the encoder is trained by the adversarial
net to match the semantic representation. In this case, the prior guides the generator (the encoder) to
learn the encoding that is close to the semantic representation.

3.3.1 SAAE-exp

SAAE-exp has an autoencoder that learns the encoding hc of the input images xc belonging to a class
c. The encoding hc is explicitly required to match the text (or, semantic/attribute)2 representation tc

2We interchangeably use “text”, “semantic”, and “attribute” in this report.
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(a) (b)

Figure 1: Semantic adversarial autoencoders with (a) Gaussian prior and explicit matching to the
text (or semantic/attribute) representation, and (b) text (semantic/attribute) representations as positive
samples drawn from some underlying prior of the text (semantic/attribute) distribution.

of that class, as well as regularized by the Gaussian prior in the adversarial net. The learning task can
be expressed as the optimization problem,

min
G

max
D

Ez∼r(z) [ logD(z) ] + Ex∼pd(x)

[
log(1−D(G(x))) + ||G(x)− t||22

]
. (4)

Given an input image representation x ∈ Rdx , the encoder encodes it into h ∈ Rdh by

h = tanh(W ex), (5)

where W e ∈ Rdh×dx , and the hyperbolic tangent function is applied element-wisely. Note that the
hidden representation space Rdh is also the space of the semantic representation; that is, t ∈ Rdh .
The decoder computes

x̃ = tanh((W e)>h), (6)

where W d ∈ Rdx×dh .

The generator of the adversarial net is the encoder of the autoencoder; that is,

G(x) = tanh(W ex) = h. (7)

The positive samples are drawn from the Gaussian prior,

z ∼ N (µ, σ2), (8)

where z ∈ Rdh , and µ and σ are chosen to be the mean and standard deviation of the semantic
representation.

We use a fully connected neural network with a single hidden layer as the discriminator. Given an
input z ∈ Rdh , it computes

z1 = sigmoid(W 1z + b1), (9)

z2 = sigmoid((w2)>z1 + b2), (10)

where z1 ∈ Rd1 , W 1 ∈ Rd1×dh , b1 ∈ Rd1 , w2 ∈ Rd1 , and b2 and z2 are scalars. The discriminator
returns

D(z) = z2, (11)

which is the estimation of the probability that z is drawn from the prior.
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For the autoencoder and the generator of the adversarial net, the loss function for a mini-batch of
instances, S, is the empirical risk,

fg =
1

|S|
∑
i∈S

{
log
[
1−D(h(i))

]
+ ||x(i) − x̃(i)||22 + ||h

(i) − tci ||22
}
, (12)

where the log function is applied element-wisely, and ci is the class of the instance x(i). Here we
assume that there is only one text tc for each class c.

For the discriminator of the adversarial net, the loss function is

fd = − 1

|S|

|S|∑
j=1

logD(z(j))− 1

|S|
∑
i∈S

log
[
1−D(h(i))

]
, (13)

where z(j) are |S| samples drawn from the prior distribution N (µ, σ2).

The optimization problem for the autoencoder and the generator is
min
W e

fg, (14)

while the parameters of the discriminator (W 1, b1,w2, b2) are held constant. The optimization
problem for the discriminator is

min
W 1,b1,w2,b2

fd, (15)

while the parameters of the generator (W e) are held constant.

3.3.2 SAAE-imp

SAAE-imp takes the text representation tc as the positive sample drawn from some underlying prior
dictating the distribution of the text representation of a class. In this architecture, the encoding is
driven to match the text representation through the adversarial net itself. The encoder, decoder,
generator, and discriminator are the same as described in section 3.3.1. The difference is that we use
the text representation, instead of Gaussian noise, as the prior in the adversarial net. For an input
image x(i) of class ci and the text representation tci of this class, we use tci as the sample drawn
from some underlying prior for the representation distribution of this class,

zci = tci . (16)
In addition, we remove the term measuring the L2 distance between the text representation and the
hidden representation of the image from the loss function.

The loss function for the autoencoder and the generator is now the standard one,

fg =
1

|S|
∑
i∈S

{
log
[
1−D(h(i))

]
+ ||x(i) − x̃(i)||22

}
. (17)

For the discriminator of the adversarial net, the loss function is

fd = − 1

|S|
∑
i∈S

logD(tci)− 1

|S|
∑
i∈S

log
[
1−D(h(i))

]
. (18)

The optimization and test procedures are the same as those described in section 3.3.1.

3.4 SAE-GAN

We also check whether adding GAN to the original architecture of SAE will change the performance
of SAE. We solve the following optimization problem,
min
G

max
D

Ez∼r(z) [ λGAN logD(z) ] + Ex∼pd(x) [ λGAN log(1−D(GSAE(x))) + λSAELSAE ] ,

(19)
where

GSAE(x) =Wx, (20)
and λGAN and λSAE are introduced to specify the relative importance of the GAN and SAE parts in
the optimization objective.
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3.5 Classification task

There are two scenarios for ZSL, namely standard ZSL and generalized ZSL. For the standard ZSL,
During training time, given training images xc and their corresponding semantic representations tc
for Ns seen classes c, the model learns to bridge the gap between xc and tc. During testing time, we
are given images xuc from Nus unseen classes and semantic representations tuc for those unseen
classes without knowing the correspondence between xuc and tuc. The task is to determine which
unseen class each image belongs to. For the generalized ZSL, the training procedure is the same, but
the test images are not constrained to unseen classes: images from both seen and unseen classes can
be used as test images and semantic representations for both classes are provided.

During the test time, we follow the same classification method as in [8]. The input test image x is
first projected to the semantic representation h, and the class is predicted by

ĉ = argmin
c

dist(tc,h), (21)

where dist is the distance function. The distance function can be the negative cosine similarity,
(tc)>h
||tc||2||h||2 , or the Euclidean distance, ||tc − h||2. We find that cosine similarity in general gives
higher classification accuracy than the Euclidean distance does. We use the former in our experiments.

4 Datasets

We conduct our experiments on two datasets. The first one is the Caltech-UCSD Birds 200-2011
dataset [16], with 200 categories of bird images. The total number of images is 11,788, and each
class consists of about 40 to 80 images. The second dataset is AwA [10], which consists of 30,475
images of 50 classes of animals.

Following the preprocessing steps taken in [8], for CUB dataset, we extract the 1024D activation
from last pooling layer of Inception-v1 [14] as our image features. For AwA dataset, we use the
extracted 1024D features provided by [8]. We use the attribute vector of each class as the semantic
representation of the class. The dimensions of the attribute vectors are 312 and 85 for the CUB and
AwA datasets, respectively.

For the standard ZSL tasks, following the description of [8], we withhold 10 and 50 classes as the
unseen classes for AwA and CUB datasets, respectively. For the generalized ZSL tasks on the CUB
dataset, we follow the description of [18]3, using 7,125 training images from the 150 seen classes,
and 4,663 test images from both 150 seen and 50 unseen classes. On the AwA dataset, we use 19,094
training images from the 40 seen classes, and 11,381 test images from both 40 seen and 10 unseen
classes.

When we run our experiments, the image features and the attribute vectors are both normalized to
[0, 1] over the entire dataset.

5 Experiments

We compare the results of our models with the Semantic Autoencoder (SAE) [8], the Joint Latent
Semantic Embedding (JLSE) [19], and the Synthesized classifiers (Sync) [2]. Due to the lack of an
identical dataset, we decide to re-implement SAE to produce a reasonable baseline. It is worth noting
that our implementation of SAE differs from that of [8] in that we solve the optimization problem by
gradient descent4in its original form, while in [8] the problem is solved by first transforming it into
a simpler linear equation. We find that the classification accuracy of the standard ZSL tasks using
our implementation of SAE on both CUB and AwA datasets is lower than that reported in [8] (see
Table 1). Although we cannot reproduce the results in [8], we implement our models in the same
framework which we use for implementing SAE, in the following discussion, we will therefore focus
on comparing our results with our own implementation of SAE for self consistency. Table 1 and 2
show the experimental results as well as the accuracy reported in [8].

3Since we do not have the information about the details of the splitting but only the number of instances in
each split, we only follow roughly there number of instances used in each split, but not the exactly same split.

4We use the AdaGrad optimizer of TensorFlow.
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CUB AwA

SAAE-exp 10.3 64.6
SAAE-imp 2.0 14.4
SAE-dir 60.2 77.0
SAE-GAN 5.7 78.5
SAE [8] 61.4 84.7
JLSE [19] 41.8 80.5
Sync [2] 54.4 72.9

Table 1: Top-1 per-class accuracy (%) of ZSL. SAAE-exp and SAAE-imp are the semantic adversarial
autoencoder using Gaussian and attribute as priors, respectively. SAE-dir is our implementation of
SAE which directly solve the optimization problem in its original form.

CUB AwA

SAAE-exp 17.8 60.0
SAAE-imp 0.5 2.4
SAE-dir 7.0 53.8
SAE-GAN 6.9 54.0

Table 2: Top-1 per-class accuracy (%) of generalized ZSL. SAAE-exp and SAAE-imp are the
semantic adversarial autoencoder using Gaussian and attribute as priors, respectively. SAE-dir is our
implementation of SAE which directly solve the optimization problem in its original form.

In the experiments of SAAE with explicit matching, the coefficients of the matching, reconstruction,
and GAN terms are all set to 1. We run for 100 epochs, and report the result top-1 per-class accuracy
using negative cosine similarity as the distance at test time. The mean and standard deviation of the
Gaussian priors are set to be the mean and standard deviation of the attributes of the dataset.

In the experiments of SAAE with implicit matching, the coefficient of the reconstruction term is 10
and that of the GAN is 1. We run for 100 epochs, and report the result top-1 per-class accuracy using
negative cosine similarity as the distance at test time.

In the experiments of our implementation of SAE, we find that better performance is given when the
coefficient of the matching loss is 100 and that of the reconstruction loss is 1. This indicates that the
performance of SAE is mostly driven by the direct matching between the encoded representation
from the image and the attribute vector, and is only marginally driven by the autoencoder.

We find that on the CUB dataset, SAAE with explicit matching achieves the best accuracy in both
standard and generalized ZSL tasks. On the AwA dataset, our SAE implementation gives the best
accuracy on both standard and generalized ZSL tasks.

6 Discussion

6.1 SAAE-exp

Our extension with adding adversarial part for the autoencoder does not yield higher accuracy than
that achieved by the SAE in the standard ZSL scenario. We have experimented with a lot of other
settings, such as adding more layers for the autoencoder, changing the hidden dimensions of the
generator and the discriminator in the adversarial part, and different sampling strategies (such as
sampling from the hidden state to produce negative samples, as described in [13], section 2), but none
of them gives any performance boost.

We suspect the reason is that the semantic features plays the essential role in the standard ZSL tasks.
We also try ablation study that does not include the semantic space as constraints. In this case the
model is just slightly better than random guess. This is expected since ZSL task usually deals with
fine-grained image classification, and without the additional semantic space input, the models trained
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GAN coefficient 10−1 10−2 10−3 10−4 0
Accuracy (%) 35.4 76.7 78.5 77.7 77.0

Table 3: The top-1 per-class accuray of the standard ZSL on the AwA dataset, using different
coefficients for the GAN in SAE-GAN.

only based on image features are likely to have a poor result. However, the only way we figure out to
incorporate the semantic features into the adversarial autoencoder is to minimize the L2 loss between
the hidden state of the encoder and the semantic representation, and this major constraint limits the
accuracy that can be achieved by the model.

The SAAE-exp model performs the best in generalized classification task. We think this is as expected
due to the nature of the task. Adversarial autoencoder is proposed to inject the global information of
the distribution of the semantic representation of the training data. Through testing the model on both
the seen and unseen classes, the model performs well because it has learned the distribution over all
the seen classes.

6.2 SAAE-imp

We observe that the classification accuracy using SAAE with the attribute as the prior is very low in
all experiments. The reason is that using attribute vectors as the prior only encourages the encoding
to have the same distribution as that of the attributes, but not educating the encoder to learn how to
generate the encoding such that each component of the encoding can best match its corresponding
component of the attribute vector. Since each component of the attribute vector has very specific
meaning, and at test time we predict the class label by matching each component of the given attribute
vector with the corresponding component of the encoding generated from the test image, lacking the
ability to correctly predict each component of the attribute vector leads to the poor performance of
this approach.

6.3 SAE

We note that SAE gives the best performance when the coefficient λ in (2) is much smaller than
1. This indicates that the learning is actually driven by learning how to generate (from attribute
to reconstructed image), rather than how to infer (from image to attribute). We think this is an
observation that has not be pointed out in the original SAE paper [8].

6.4 SAE-GAN

By adding GAN on top of the SAE, we find that on the AwA dataset it improves the accuracy, but on
the CUB dataset it does not. For the standard ZSL on the AwA dataset, in which GAN makes the
most significant improvement, we conduct more detailed experiments to check how accuracy changes
by using different coefficients λGAN for the GAN while keeping λSAE fixed. The results are shown in
Table 3. We observe that with suitable coefficient, GAN slightly improves the accuracy, but if the
coefficient of GAN is too large, it harms the performance.

7 Conclusion

In this paper, we proposed to use the adversarial antoencoder framework incorporating semantic
features as a solution to ZSL problem. Our method, the semantic adversarial autoencoder, projects
the image representation into the semantic feature space with a discriminator matching the projection
to a given prior. It outperforms the semantic autoencoder in the generalized zero-shot learning tasks
on the AwA and CUB datasets.
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